使用贝叶斯加性回归树进行变量选择。

IF 3.9 1区 数学 Q1 STATISTICS & PROBABILITY Statistical Science Pub Date : 2024-05-01 Epub Date: 2024-05-05 DOI:10.1214/23-sts900
Chuji Luo, Michael J Daniels
{"title":"使用贝叶斯加性回归树进行变量选择。","authors":"Chuji Luo, Michael J Daniels","doi":"10.1214/23-sts900","DOIUrl":null,"url":null,"abstract":"<p><p>Variable selection is an important statistical problem. This problem becomes more challenging when the candidate predictors are of mixed type (e.g. continuous and binary) and impact the response variable in nonlinear and/or non-additive ways. In this paper, we review existing variable selection approaches for the Bayesian additive regression trees (BART) model, a nonparametric regression model, which is flexible enough to capture the interactions between predictors and nonlinear relationships with the response. An emphasis of this review is on the ability to identify relevant predictors. We also propose two variable importance measures which can be used in a permutation-based variable selection approach, and a backward variable selection procedure for BART. We introduce these variations as a way of illustrating limitations and opportunities for improving current approaches and assess these via simulations.</p>","PeriodicalId":51172,"journal":{"name":"Statistical Science","volume":"39 2","pages":"286-304"},"PeriodicalIF":3.9000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11395240/pdf/","citationCount":"0","resultStr":"{\"title\":\"Variable Selection Using Bayesian Additive Regression Trees.\",\"authors\":\"Chuji Luo, Michael J Daniels\",\"doi\":\"10.1214/23-sts900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Variable selection is an important statistical problem. This problem becomes more challenging when the candidate predictors are of mixed type (e.g. continuous and binary) and impact the response variable in nonlinear and/or non-additive ways. In this paper, we review existing variable selection approaches for the Bayesian additive regression trees (BART) model, a nonparametric regression model, which is flexible enough to capture the interactions between predictors and nonlinear relationships with the response. An emphasis of this review is on the ability to identify relevant predictors. We also propose two variable importance measures which can be used in a permutation-based variable selection approach, and a backward variable selection procedure for BART. We introduce these variations as a way of illustrating limitations and opportunities for improving current approaches and assess these via simulations.</p>\",\"PeriodicalId\":51172,\"journal\":{\"name\":\"Statistical Science\",\"volume\":\"39 2\",\"pages\":\"286-304\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11395240/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Science\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-sts900\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-sts900","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

变量选择是一个重要的统计问题。当候选预测因子为混合类型(如连续和二元),并以非线性和/或非加性方式影响响应变量时,这一问题就变得更具挑战性。在本文中,我们回顾了贝叶斯加性回归树(BART)模型的现有变量选择方法,该模型是一种非参数回归模型,具有足够的灵活性来捕捉预测因子之间的交互作用以及与响应的非线性关系。本综述的重点在于识别相关预测因子的能力。我们还提出了两种变量重要性测量方法,可用于基于置换的变量选择方法和 BART 的后向变量选择程序。我们介绍这些变式是为了说明当前方法的局限性和改进机会,并通过模拟对这些变式进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Variable Selection Using Bayesian Additive Regression Trees.

Variable selection is an important statistical problem. This problem becomes more challenging when the candidate predictors are of mixed type (e.g. continuous and binary) and impact the response variable in nonlinear and/or non-additive ways. In this paper, we review existing variable selection approaches for the Bayesian additive regression trees (BART) model, a nonparametric regression model, which is flexible enough to capture the interactions between predictors and nonlinear relationships with the response. An emphasis of this review is on the ability to identify relevant predictors. We also propose two variable importance measures which can be used in a permutation-based variable selection approach, and a backward variable selection procedure for BART. We introduce these variations as a way of illustrating limitations and opportunities for improving current approaches and assess these via simulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Science
Statistical Science 数学-统计学与概率论
CiteScore
6.50
自引率
1.80%
发文量
40
审稿时长
>12 weeks
期刊介绍: The central purpose of Statistical Science is to convey the richness, breadth and unity of the field by presenting the full range of contemporary statistical thought at a moderate technical level, accessible to the wide community of practitioners, researchers and students of statistics and probability.
期刊最新文献
Variable Selection Using Bayesian Additive Regression Trees. Defining Replicability of Prediction Rules Tracking Truth Through Measurement and the Spyglass of Statistics Replicability Across Multiple Studies Game-Theoretic Statistics and Safe Anytime-Valid Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1