Muhammad Jamal Ahmed , Urooj Afridi , Hasnain Ali Shah , Habib Khan , Mohammed Wasim Bhatt , Abdullah Alwabli , Inam Ullah
{"title":"CardioGuard:用于远程医疗系统中预测性健康监测的人工智能驱动心电图验证混合神经网络。","authors":"Muhammad Jamal Ahmed , Urooj Afridi , Hasnain Ali Shah , Habib Khan , Mohammed Wasim Bhatt , Abdullah Alwabli , Inam Ullah","doi":"10.1016/j.slast.2024.100193","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing integration of telehealth systems underscores the importance of robust and secure methods for patient data management. Traditional authentication methods, such as passwords and PINs, are prone to breaches, underscoring the need for more secure alternatives. Therefore, there is a need for alternative approaches that provide enhanced security and user convenience. Biometric-based authentication systems uses individuals unique physical or behavioral characteristics for identification, have emerged as a promising solution. Specifically, Electrocardiogram (ECG) signals have gained attention among various biometric modalities due to their uniqueness, stability, and non-invasiveness. This paper presents CardioGaurd, a deep learning-based authentication system that leverages ECG signals—unique, stable, and non-invasive biometric markers. The proposed system uses a hybrid Convolution and Long short-term memory based model to obtain rich characteristics from the ECG signal and classify it as authentic or fake. CardioGaurd not only ensures secure access but also serves as a predictive tool by analyzing ECG patterns that could indicate early signs of cardiovascular abnormalities. This dual functionality enhances patient security and contributes to AI-driven disease prevention and early detection. Our results demonstrate that CardioGaurd offers superior performance in both security and potential predictive health insights compared to traditional models, thus supporting a shift towards more proactive and personalized telehealth solutions.</div></div>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":"29 5","pages":"Article 100193"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S247263032400075X/pdfft?md5=c31468384bcd0ef166c3834aedba50a5&pid=1-s2.0-S247263032400075X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"CardioGuard: AI-driven ECG authentication hybrid neural network for predictive health monitoring in telehealth systems\",\"authors\":\"Muhammad Jamal Ahmed , Urooj Afridi , Hasnain Ali Shah , Habib Khan , Mohammed Wasim Bhatt , Abdullah Alwabli , Inam Ullah\",\"doi\":\"10.1016/j.slast.2024.100193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The increasing integration of telehealth systems underscores the importance of robust and secure methods for patient data management. Traditional authentication methods, such as passwords and PINs, are prone to breaches, underscoring the need for more secure alternatives. Therefore, there is a need for alternative approaches that provide enhanced security and user convenience. Biometric-based authentication systems uses individuals unique physical or behavioral characteristics for identification, have emerged as a promising solution. Specifically, Electrocardiogram (ECG) signals have gained attention among various biometric modalities due to their uniqueness, stability, and non-invasiveness. This paper presents CardioGaurd, a deep learning-based authentication system that leverages ECG signals—unique, stable, and non-invasive biometric markers. The proposed system uses a hybrid Convolution and Long short-term memory based model to obtain rich characteristics from the ECG signal and classify it as authentic or fake. CardioGaurd not only ensures secure access but also serves as a predictive tool by analyzing ECG patterns that could indicate early signs of cardiovascular abnormalities. This dual functionality enhances patient security and contributes to AI-driven disease prevention and early detection. Our results demonstrate that CardioGaurd offers superior performance in both security and potential predictive health insights compared to traditional models, thus supporting a shift towards more proactive and personalized telehealth solutions.</div></div>\",\"PeriodicalId\":54248,\"journal\":{\"name\":\"SLAS Technology\",\"volume\":\"29 5\",\"pages\":\"Article 100193\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S247263032400075X/pdfft?md5=c31468384bcd0ef166c3834aedba50a5&pid=1-s2.0-S247263032400075X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SLAS Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S247263032400075X\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Technology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S247263032400075X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
CardioGuard: AI-driven ECG authentication hybrid neural network for predictive health monitoring in telehealth systems
The increasing integration of telehealth systems underscores the importance of robust and secure methods for patient data management. Traditional authentication methods, such as passwords and PINs, are prone to breaches, underscoring the need for more secure alternatives. Therefore, there is a need for alternative approaches that provide enhanced security and user convenience. Biometric-based authentication systems uses individuals unique physical or behavioral characteristics for identification, have emerged as a promising solution. Specifically, Electrocardiogram (ECG) signals have gained attention among various biometric modalities due to their uniqueness, stability, and non-invasiveness. This paper presents CardioGaurd, a deep learning-based authentication system that leverages ECG signals—unique, stable, and non-invasive biometric markers. The proposed system uses a hybrid Convolution and Long short-term memory based model to obtain rich characteristics from the ECG signal and classify it as authentic or fake. CardioGaurd not only ensures secure access but also serves as a predictive tool by analyzing ECG patterns that could indicate early signs of cardiovascular abnormalities. This dual functionality enhances patient security and contributes to AI-driven disease prevention and early detection. Our results demonstrate that CardioGaurd offers superior performance in both security and potential predictive health insights compared to traditional models, thus supporting a shift towards more proactive and personalized telehealth solutions.
期刊介绍:
SLAS Technology emphasizes scientific and technical advances that enable and improve life sciences research and development; drug-delivery; diagnostics; biomedical and molecular imaging; and personalized and precision medicine. This includes high-throughput and other laboratory automation technologies; micro/nanotechnologies; analytical, separation and quantitative techniques; synthetic chemistry and biology; informatics (data analysis, statistics, bio, genomic and chemoinformatics); and more.