{"title":"周期性行波的延迟失稳:本质光谱分析的启示","authors":"Lukas Eigentler , Mattia Sensi","doi":"10.1016/j.jtbi.2024.111945","DOIUrl":null,"url":null,"abstract":"<div><div>Periodic travelling waves (PTW) are a common solution type of partial differential equations. Such models exhibit multistability of PTWs, typically visualised through the Busse balloon, and parameter changes typically lead to a cascade of wavelength changes through the Busse balloon. In the past, the stability boundaries of the Busse balloon have been used to predict such wavelength changes. Here, motivated by anecdotal evidence from previous work, we provide compelling evidence that the Busse balloon provides insufficient information to predict wavelength changes due to a delayed loss of stability phenomenon. Using two different reaction–advection–diffusion systems, we relate the delay that occurs between the crossing of a stability boundary in the Busse balloon and the occurrence of a wavelength change to features of the essential spectrum of the destabilised PTW. This leads to a predictive framework that can estimate the order of magnitude of such a time delay, which provides a novel “early warning sign” for pattern destabilisation. We illustrate the implementation of the predictive framework to predict under what conditions a wavelength change of a PTW occurs.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022519324002303/pdfft?md5=3013d4efdcdbd16448a87c3fd0061653&pid=1-s2.0-S0022519324002303-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Delayed loss of stability of periodic travelling waves: Insights from the analysis of essential spectra\",\"authors\":\"Lukas Eigentler , Mattia Sensi\",\"doi\":\"10.1016/j.jtbi.2024.111945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Periodic travelling waves (PTW) are a common solution type of partial differential equations. Such models exhibit multistability of PTWs, typically visualised through the Busse balloon, and parameter changes typically lead to a cascade of wavelength changes through the Busse balloon. In the past, the stability boundaries of the Busse balloon have been used to predict such wavelength changes. Here, motivated by anecdotal evidence from previous work, we provide compelling evidence that the Busse balloon provides insufficient information to predict wavelength changes due to a delayed loss of stability phenomenon. Using two different reaction–advection–diffusion systems, we relate the delay that occurs between the crossing of a stability boundary in the Busse balloon and the occurrence of a wavelength change to features of the essential spectrum of the destabilised PTW. This leads to a predictive framework that can estimate the order of magnitude of such a time delay, which provides a novel “early warning sign” for pattern destabilisation. We illustrate the implementation of the predictive framework to predict under what conditions a wavelength change of a PTW occurs.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022519324002303/pdfft?md5=3013d4efdcdbd16448a87c3fd0061653&pid=1-s2.0-S0022519324002303-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022519324002303\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022519324002303","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Delayed loss of stability of periodic travelling waves: Insights from the analysis of essential spectra
Periodic travelling waves (PTW) are a common solution type of partial differential equations. Such models exhibit multistability of PTWs, typically visualised through the Busse balloon, and parameter changes typically lead to a cascade of wavelength changes through the Busse balloon. In the past, the stability boundaries of the Busse balloon have been used to predict such wavelength changes. Here, motivated by anecdotal evidence from previous work, we provide compelling evidence that the Busse balloon provides insufficient information to predict wavelength changes due to a delayed loss of stability phenomenon. Using two different reaction–advection–diffusion systems, we relate the delay that occurs between the crossing of a stability boundary in the Busse balloon and the occurrence of a wavelength change to features of the essential spectrum of the destabilised PTW. This leads to a predictive framework that can estimate the order of magnitude of such a time delay, which provides a novel “early warning sign” for pattern destabilisation. We illustrate the implementation of the predictive framework to predict under what conditions a wavelength change of a PTW occurs.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.