通过缝合刻度条方法改进长测试长度:激光跟踪仪的中期测试。

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION Journal of Research of the National Institute of Standards and Technology Pub Date : 2020-05-28 eCollection Date: 2020-01-01 DOI:10.6028/jres.125.016
Vincent D Lee, Daniel Sawyer, Bala Muralikrishnan
{"title":"通过缝合刻度条方法改进长测试长度:激光跟踪仪的中期测试。","authors":"Vincent D Lee, Daniel Sawyer, Bala Muralikrishnan","doi":"10.6028/jres.125.016","DOIUrl":null,"url":null,"abstract":"<p><p>Performance verifications of laser tracker systems (LTSs) often rely on calibrated length artifacts that are 2.3 m in length or more, as specified in International Standards Organization (ISO) and American Society of Mechanical Engineers (ASME) standards. The 2.3 m length is chosen as the minimum length that will sufficiently expose inaccuracy in LTSs. Embodiment of these artifacts often comes in the form of scale bars, fixed monuments, or a laser rail. In National Institute of Standards and Technology (NIST) Internal Report (IR) 8016, which was published in 2014 and discusses interim testing of LTSs, it was shown that a scale bar with three nests spaced 1.15 m apart was sufficient for exposing errors in LTSs. In that case, the LTS was placed symmetrically with respect to the scale bar so that both a 2.3 m symmetrical length and a 1.15 m asymmetrical length were presented to the LTS. This paper will evaluate whether a scale bar that is only 1.15 m in length can sufficiently expose errors within the LTS when it is stitched together to create a 2.3 m long test length.</p>","PeriodicalId":54766,"journal":{"name":"Journal of Research of the National Institute of Standards and Technology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2020-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11374359/pdf/","citationCount":"0","resultStr":"{\"title\":\"Improvised Long Test Lengths via Stitching Scale Bar Method: Interim Testing of Laser Trackers.\",\"authors\":\"Vincent D Lee, Daniel Sawyer, Bala Muralikrishnan\",\"doi\":\"10.6028/jres.125.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Performance verifications of laser tracker systems (LTSs) often rely on calibrated length artifacts that are 2.3 m in length or more, as specified in International Standards Organization (ISO) and American Society of Mechanical Engineers (ASME) standards. The 2.3 m length is chosen as the minimum length that will sufficiently expose inaccuracy in LTSs. Embodiment of these artifacts often comes in the form of scale bars, fixed monuments, or a laser rail. In National Institute of Standards and Technology (NIST) Internal Report (IR) 8016, which was published in 2014 and discusses interim testing of LTSs, it was shown that a scale bar with three nests spaced 1.15 m apart was sufficient for exposing errors in LTSs. In that case, the LTS was placed symmetrically with respect to the scale bar so that both a 2.3 m symmetrical length and a 1.15 m asymmetrical length were presented to the LTS. This paper will evaluate whether a scale bar that is only 1.15 m in length can sufficiently expose errors within the LTS when it is stitched together to create a 2.3 m long test length.</p>\",\"PeriodicalId\":54766,\"journal\":{\"name\":\"Journal of Research of the National Institute of Standards and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11374359/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research of the National Institute of Standards and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.6028/jres.125.016\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Institute of Standards and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.6028/jres.125.016","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

根据国际标准化组织 (ISO) 和美国机械工程师学会 (ASME) 标准的规定,激光跟踪仪系统 (LTS) 的性能验证通常依赖于长度为 2.3 米或更长的校准长度工件。2.3 米长度被选为能充分暴露 LTS 不准确性的最小长度。这些人工制品通常以刻度条、固定石碑或激光导轨的形式出现。美国国家标准与技术研究院(NIST)于 2014 年发布的《内部报告》(IR)8016 中讨论了 LTS 的临时测试,该报告显示,带有三个间距为 1.15 米的嵌套的刻度条足以暴露 LTS 中的误差。在这种情况下,LTS 相对于标尺杆对称放置,这样 LTS 就能看到 2.3 米的对称长度和 1.15 米的不对称长度。本文将评估长度仅为 1.15 米的刻度条在拼接成 2.3 米长的测试长度时,能否充分暴露 LTS 内部的误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improvised Long Test Lengths via Stitching Scale Bar Method: Interim Testing of Laser Trackers.

Performance verifications of laser tracker systems (LTSs) often rely on calibrated length artifacts that are 2.3 m in length or more, as specified in International Standards Organization (ISO) and American Society of Mechanical Engineers (ASME) standards. The 2.3 m length is chosen as the minimum length that will sufficiently expose inaccuracy in LTSs. Embodiment of these artifacts often comes in the form of scale bars, fixed monuments, or a laser rail. In National Institute of Standards and Technology (NIST) Internal Report (IR) 8016, which was published in 2014 and discusses interim testing of LTSs, it was shown that a scale bar with three nests spaced 1.15 m apart was sufficient for exposing errors in LTSs. In that case, the LTS was placed symmetrically with respect to the scale bar so that both a 2.3 m symmetrical length and a 1.15 m asymmetrical length were presented to the LTS. This paper will evaluate whether a scale bar that is only 1.15 m in length can sufficiently expose errors within the LTS when it is stitched together to create a 2.3 m long test length.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
10
审稿时长
>12 weeks
期刊介绍: The Journal of Research of the National Institute of Standards and Technology is the flagship publication of the National Institute of Standards and Technology. It has been published under various titles and forms since 1904, with its roots as Scientific Papers issued as the Bulletin of the Bureau of Standards. In 1928, the Scientific Papers were combined with Technologic Papers, which reported results of investigations of material and methods of testing. This new publication was titled the Bureau of Standards Journal of Research. The Journal of Research of NIST reports NIST research and development in metrology and related fields of physical science, engineering, applied mathematics, statistics, biotechnology, information technology.
期刊最新文献
Models for an Ultraviolet-C Research and Development Consortium. Disinfection of Respirators with Ultraviolet Radiation. Capacity Models and Transmission Risk Mitigation: An Engineering Framework to Predict the Effect of Air Disinfection by Germicidal Ultraviolet Radiation. Portable Ultraviolet-C Chambers for Inactivation of SARS-CoV-2. Calorimetry in Computed Tomography Beams.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1