Wei Yue, Hong-Yong Zhang, Heide Schatten, Tie-Gang Meng, Qing-Yuan Sun
{"title":"CtIP调节小鼠卵母细胞减数分裂过程中的G2/M转换和双极纺锤体组装。","authors":"Wei Yue, Hong-Yong Zhang, Heide Schatten, Tie-Gang Meng, Qing-Yuan Sun","doi":"10.1016/j.jgg.2024.09.005","DOIUrl":null,"url":null,"abstract":"<p><p>CtBP-interacting protein (CtIP) is known for its multifaceted roles in DNA repair and genomic stability, directing the homologous recombination-mediated DNA double-stranded break repair pathway via DNA end resection, an essential error-free repair process vital for genome stability. Mammalian oocytes are highly prone to DNA damage accumulation due to prolonged G2/prophase arrest. Here, we explore the functions of CtIP in meiotic cell cycle regulation via a mouse oocyte model. Depletion of CtIP by siRNA injection results in delayed germinal vesicle breakdown and failed polar body extrusion. Mechanistically, CtIP deficiency increases DNA damage and decreases the expression and nuclear entry of CCNB1, resulting in marked impairment of meiotic resumption, which can be rescued by exogenous CCNB1 overexpression. Furthermore, depletion of CtIP disrupts microtubule-organizing centers coalescence at spindle poles as indicated by failed accumulation of γ-tubulin, p-Aurora kinase A, Kif2A, and TPX2, leading to abnormal spindle assembly and prometaphase arrest. These results provide valuable insights into the important roles of CtIP in the G2/M checkpoint and spindle assembly in mouse oocyte meiotic cell cycle regulation.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":"1435-1446"},"PeriodicalIF":6.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CtIP regulates G2/M transition and bipolar spindle assembly during mouse oocyte meiosis.\",\"authors\":\"Wei Yue, Hong-Yong Zhang, Heide Schatten, Tie-Gang Meng, Qing-Yuan Sun\",\"doi\":\"10.1016/j.jgg.2024.09.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>CtBP-interacting protein (CtIP) is known for its multifaceted roles in DNA repair and genomic stability, directing the homologous recombination-mediated DNA double-stranded break repair pathway via DNA end resection, an essential error-free repair process vital for genome stability. Mammalian oocytes are highly prone to DNA damage accumulation due to prolonged G2/prophase arrest. Here, we explore the functions of CtIP in meiotic cell cycle regulation via a mouse oocyte model. Depletion of CtIP by siRNA injection results in delayed germinal vesicle breakdown and failed polar body extrusion. Mechanistically, CtIP deficiency increases DNA damage and decreases the expression and nuclear entry of CCNB1, resulting in marked impairment of meiotic resumption, which can be rescued by exogenous CCNB1 overexpression. Furthermore, depletion of CtIP disrupts microtubule-organizing centers coalescence at spindle poles as indicated by failed accumulation of γ-tubulin, p-Aurora kinase A, Kif2A, and TPX2, leading to abnormal spindle assembly and prometaphase arrest. These results provide valuable insights into the important roles of CtIP in the G2/M checkpoint and spindle assembly in mouse oocyte meiotic cell cycle regulation.</p>\",\"PeriodicalId\":54825,\"journal\":{\"name\":\"Journal of Genetics and Genomics\",\"volume\":\" \",\"pages\":\"1435-1446\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Genetics and Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jgg.2024.09.005\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jgg.2024.09.005","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
众所周知,CtBP-Interacting 蛋白(CtIP)在 DNA 修复和基因组稳定性方面发挥着多方面的作用,它通过 DNA 末端切除来指导同源重组介导的 DNA 双链断裂(DSBs)修复途径,这是一个对基因组稳定性至关重要的无差错修复过程。哺乳动物卵母细胞由于长期停滞在 G2/ Prophase,极易发生 DNA 损伤积累。在此,我们通过小鼠卵母细胞模型来探索 CtIP 在减数分裂细胞周期调控中的功能。通过注射 siRNA 来消耗 CtIP 会导致生殖泡破裂延迟和极体挤出失败。从机理上讲,CtIP的缺乏会增加DNA损伤,降低CCNB1的表达和核进入,从而导致减数分裂恢复的明显障碍,而这种障碍可通过外源CCNB1的过表达来挽救。此外,γ-微管蛋白、p-极光激酶 A、Kif2A 和 TPX2 的积累失败表明,CtIP 的耗竭会破坏 MTOCs 在纺锤体两极的凝聚,导致纺锤体组装异常和原分裂停滞。这些结果为了解 CtIP 在小鼠卵母细胞减数分裂细胞周期调控的 G2/M 检查点和纺锤体组装中的重要作用提供了有价值的见解。
CtIP regulates G2/M transition and bipolar spindle assembly during mouse oocyte meiosis.
CtBP-interacting protein (CtIP) is known for its multifaceted roles in DNA repair and genomic stability, directing the homologous recombination-mediated DNA double-stranded break repair pathway via DNA end resection, an essential error-free repair process vital for genome stability. Mammalian oocytes are highly prone to DNA damage accumulation due to prolonged G2/prophase arrest. Here, we explore the functions of CtIP in meiotic cell cycle regulation via a mouse oocyte model. Depletion of CtIP by siRNA injection results in delayed germinal vesicle breakdown and failed polar body extrusion. Mechanistically, CtIP deficiency increases DNA damage and decreases the expression and nuclear entry of CCNB1, resulting in marked impairment of meiotic resumption, which can be rescued by exogenous CCNB1 overexpression. Furthermore, depletion of CtIP disrupts microtubule-organizing centers coalescence at spindle poles as indicated by failed accumulation of γ-tubulin, p-Aurora kinase A, Kif2A, and TPX2, leading to abnormal spindle assembly and prometaphase arrest. These results provide valuable insights into the important roles of CtIP in the G2/M checkpoint and spindle assembly in mouse oocyte meiotic cell cycle regulation.
期刊介绍:
The Journal of Genetics and Genomics (JGG, formerly known as Acta Genetica Sinica ) is an international journal publishing peer-reviewed articles of novel and significant discoveries in the fields of genetics and genomics. Topics of particular interest include but are not limited to molecular genetics, developmental genetics, cytogenetics, epigenetics, medical genetics, population and evolutionary genetics, genomics and functional genomics as well as bioinformatics and computational biology.