{"title":"生存模型中多个随机变化点的贝叶斯分析在临床试验中的应用。","authors":"Jianbo Xu","doi":"10.1080/10543406.2024.2395542","DOIUrl":null,"url":null,"abstract":"<p><p>Single and multiple random change points (RCPs) in survival analysis have arisen naturally in oncology trials, where the time to hazard rate change differs from one subject to another. Recently, Xu formulated and discovered important properties of these survival models using a frequentist approach, allowing us to estimate the hazard rates, rate parameters of the exponential distributions for the RCPs, expected survival and hazard functions. However, these methods did not provide an estimation of the uncertainty or the confidence intervals for the parameters and their differences or ratios. Therefore, statistical inferences were not able to be drawn on the parameters and their comparisons. To solve this issue, this article implements a Gibbs sampler method to estimate the above parameters and the differences or ratios alongside the 100(1 <math><mo>-</mo></math> <math><mi>α</mi></math>)% highest posterior density (HPD) intervals calculated from Chen-Shao's algorithm. The estimated rate parameters from the methods in Xu serve as empirical values in the Gibbs sampler method. Thus, formal statistical inferences can now be readily drawn. Simulation studies demonstrate that the proposed methods yield robust estimates, with the samples from the marginal posterior distributions converging rapidly and exhibiting favorable behavior. The 95% HPD intervals also demonstrate excellent coverage probabilities. This proposed method has a multitude of applications in clinical trials such as efficient clinical trial design and sample size adjustment based on the estimated parameter values at interim analyses.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-18"},"PeriodicalIF":1.2000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian analyses of multiple random change points in survival models with applications to clinical trials.\",\"authors\":\"Jianbo Xu\",\"doi\":\"10.1080/10543406.2024.2395542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single and multiple random change points (RCPs) in survival analysis have arisen naturally in oncology trials, where the time to hazard rate change differs from one subject to another. Recently, Xu formulated and discovered important properties of these survival models using a frequentist approach, allowing us to estimate the hazard rates, rate parameters of the exponential distributions for the RCPs, expected survival and hazard functions. However, these methods did not provide an estimation of the uncertainty or the confidence intervals for the parameters and their differences or ratios. Therefore, statistical inferences were not able to be drawn on the parameters and their comparisons. To solve this issue, this article implements a Gibbs sampler method to estimate the above parameters and the differences or ratios alongside the 100(1 <math><mo>-</mo></math> <math><mi>α</mi></math>)% highest posterior density (HPD) intervals calculated from Chen-Shao's algorithm. The estimated rate parameters from the methods in Xu serve as empirical values in the Gibbs sampler method. Thus, formal statistical inferences can now be readily drawn. Simulation studies demonstrate that the proposed methods yield robust estimates, with the samples from the marginal posterior distributions converging rapidly and exhibiting favorable behavior. The 95% HPD intervals also demonstrate excellent coverage probabilities. This proposed method has a multitude of applications in clinical trials such as efficient clinical trial design and sample size adjustment based on the estimated parameter values at interim analyses.</p>\",\"PeriodicalId\":54870,\"journal\":{\"name\":\"Journal of Biopharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"1-18\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biopharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10543406.2024.2395542\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2024.2395542","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Bayesian analyses of multiple random change points in survival models with applications to clinical trials.
Single and multiple random change points (RCPs) in survival analysis have arisen naturally in oncology trials, where the time to hazard rate change differs from one subject to another. Recently, Xu formulated and discovered important properties of these survival models using a frequentist approach, allowing us to estimate the hazard rates, rate parameters of the exponential distributions for the RCPs, expected survival and hazard functions. However, these methods did not provide an estimation of the uncertainty or the confidence intervals for the parameters and their differences or ratios. Therefore, statistical inferences were not able to be drawn on the parameters and their comparisons. To solve this issue, this article implements a Gibbs sampler method to estimate the above parameters and the differences or ratios alongside the 100(1 )% highest posterior density (HPD) intervals calculated from Chen-Shao's algorithm. The estimated rate parameters from the methods in Xu serve as empirical values in the Gibbs sampler method. Thus, formal statistical inferences can now be readily drawn. Simulation studies demonstrate that the proposed methods yield robust estimates, with the samples from the marginal posterior distributions converging rapidly and exhibiting favorable behavior. The 95% HPD intervals also demonstrate excellent coverage probabilities. This proposed method has a multitude of applications in clinical trials such as efficient clinical trial design and sample size adjustment based on the estimated parameter values at interim analyses.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.