基于 "圆形几何假说 "的仿生半规管感知旋转加速度机制研究。

IF 1.7 4区 医学 Q4 BIOPHYSICS Journal of Biomechanical Engineering-Transactions of the Asme Pub Date : 2024-09-13 DOI:10.1115/1.4066526
Yixiang Bian, Wujie Liu, Junjie Dai, Xianhua Wen, Yani Jiang
{"title":"基于 \"圆形几何假说 \"的仿生半规管感知旋转加速度机制研究。","authors":"Yixiang Bian, Wujie Liu, Junjie Dai, Xianhua Wen, Yani Jiang","doi":"10.1115/1.4066526","DOIUrl":null,"url":null,"abstract":"<p><p>Academia often uses the \"circular geometry hypothesis\" to explain the sensing principle of the human SCC system for angular acceleration, which is widely accepted as an important angular acceleration sensor in the human balance system. Based on this hypothesis and the anatomical structure of human SCCs, a series of physical SCC models with different geometries at 4× magnification were prepared via 3D printing and modification of hydrogels. Theoretical models of the SCC perception mechanism were established. Then, impulse angular acceleration, sinusoidal rotation and sinusoidal linear stimulation were applied to the models, and their responses were visually observed and analyzed in detail. As a result, the circular SCC model had a larger system gain and a smaller phase difference for the angular acceleration stimulation but a smaller system gain and a larger phase difference for the linear acceleration stimulation. These results verified that the circular semicircular canal was more sensitive to angular acceleration.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the Mechanism of Perceived Rotational Acceleration of a Bionic Semicircular Canal on the Basis of the \\\"Circular Geometry Hypothesis\\\".\",\"authors\":\"Yixiang Bian, Wujie Liu, Junjie Dai, Xianhua Wen, Yani Jiang\",\"doi\":\"10.1115/1.4066526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Academia often uses the \\\"circular geometry hypothesis\\\" to explain the sensing principle of the human SCC system for angular acceleration, which is widely accepted as an important angular acceleration sensor in the human balance system. Based on this hypothesis and the anatomical structure of human SCCs, a series of physical SCC models with different geometries at 4× magnification were prepared via 3D printing and modification of hydrogels. Theoretical models of the SCC perception mechanism were established. Then, impulse angular acceleration, sinusoidal rotation and sinusoidal linear stimulation were applied to the models, and their responses were visually observed and analyzed in detail. As a result, the circular SCC model had a larger system gain and a smaller phase difference for the angular acceleration stimulation but a smaller system gain and a larger phase difference for the linear acceleration stimulation. These results verified that the circular semicircular canal was more sensitive to angular acceleration.</p>\",\"PeriodicalId\":54871,\"journal\":{\"name\":\"Journal of Biomechanical Engineering-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomechanical Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4066526\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomechanical Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4066526","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

学术界通常用 "圆形几何假说 "来解释人体SCC系统对角加速度的感应原理,并普遍认为SCC是人体平衡系统中重要的角加速度传感器。根据这一假说和人体SCC的解剖结构,通过三维打印和水凝胶改性,制备了一系列放大4倍的不同几何形状的SCC物理模型。建立了 SCC 感知机制的理论模型。然后,对模型施加脉冲角加速度、正弦旋转和正弦线性刺激,并对其反应进行直观观察和详细分析。结果发现,圆形 SCC 模型在角加速度刺激下的系统增益较大,相位差较小,而在线性加速度刺激下的系统增益较小,相位差较大。这些结果验证了圆形半规管对角加速度更为敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study of the Mechanism of Perceived Rotational Acceleration of a Bionic Semicircular Canal on the Basis of the "Circular Geometry Hypothesis".

Academia often uses the "circular geometry hypothesis" to explain the sensing principle of the human SCC system for angular acceleration, which is widely accepted as an important angular acceleration sensor in the human balance system. Based on this hypothesis and the anatomical structure of human SCCs, a series of physical SCC models with different geometries at 4× magnification were prepared via 3D printing and modification of hydrogels. Theoretical models of the SCC perception mechanism were established. Then, impulse angular acceleration, sinusoidal rotation and sinusoidal linear stimulation were applied to the models, and their responses were visually observed and analyzed in detail. As a result, the circular SCC model had a larger system gain and a smaller phase difference for the angular acceleration stimulation but a smaller system gain and a larger phase difference for the linear acceleration stimulation. These results verified that the circular semicircular canal was more sensitive to angular acceleration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
5.90%
发文量
169
审稿时长
4-8 weeks
期刊介绍: Artificial Organs and Prostheses; Bioinstrumentation and Measurements; Bioheat Transfer; Biomaterials; Biomechanics; Bioprocess Engineering; Cellular Mechanics; Design and Control of Biological Systems; Physiological Systems.
期刊最新文献
Computational Study on the Effects of Valve Orientation on the Hemodynamics and Leaflet Dynamics of Bioprosthetic Pulmonary Valves. Modeling Fatigue Failure of Cartilage and Fibrous Biological Tissues Using Constrained Reactive Mixture Theory. A Numerical Study of Crack Penetration and Deflection at the Interface Between Peritubular and Intertubular Dentin. Mitigating Crouch Gait With an Autonomous Pediatric Knee Exoskeleton in the Neurologically Impaired. Topology Optimization Driven Bone-Remodeling Simulation for Lumbar Interbody Fusion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1