光谱 CT 的联合材料分解与散射估计

Altea Lorenzon, Stephen Z Liu, Xiao Jiang, Grace J Gang, J Webster Stayman, Grace J Gang
{"title":"光谱 CT 的联合材料分解与散射估计","authors":"Altea Lorenzon, Stephen Z Liu, Xiao Jiang, Grace J Gang, J Webster Stayman, Grace J Gang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate scatter correction is essential to obtain highquality reconstructions in computed tomography. While many correction strategies for this longstanding issue have been developed, additional efforts may be required for spectral CT imaging - which is particularly sensitive to unmodeled biases. In this work we explore a joint estimation approach within a one-step model-based material decomposition framework to simultaneously estimate material densities and scatter profiles in spectral CT. The method is applied to simulated phantom data obtained using a parametric additive scatter mode, and compared to the unmodeled scatter scenario. In these preliminary experiments, We find that this joint estimation approach has the potential to significantly reduce artifacts associated with unmodeled scatter and to improve material density estimates.</p>","PeriodicalId":90477,"journal":{"name":"Conference proceedings. International Conference on Image Formation in X-Ray Computed Tomography","volume":"2024 ","pages":"186-189"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11391857/pdf/","citationCount":"0","resultStr":"{\"title\":\"Joint Material Decomposition and Scatter Estimation for Spectral CT.\",\"authors\":\"Altea Lorenzon, Stephen Z Liu, Xiao Jiang, Grace J Gang, J Webster Stayman, Grace J Gang\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate scatter correction is essential to obtain highquality reconstructions in computed tomography. While many correction strategies for this longstanding issue have been developed, additional efforts may be required for spectral CT imaging - which is particularly sensitive to unmodeled biases. In this work we explore a joint estimation approach within a one-step model-based material decomposition framework to simultaneously estimate material densities and scatter profiles in spectral CT. The method is applied to simulated phantom data obtained using a parametric additive scatter mode, and compared to the unmodeled scatter scenario. In these preliminary experiments, We find that this joint estimation approach has the potential to significantly reduce artifacts associated with unmodeled scatter and to improve material density estimates.</p>\",\"PeriodicalId\":90477,\"journal\":{\"name\":\"Conference proceedings. International Conference on Image Formation in X-Ray Computed Tomography\",\"volume\":\"2024 \",\"pages\":\"186-189\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11391857/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference proceedings. International Conference on Image Formation in X-Ray Computed Tomography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference proceedings. International Conference on Image Formation in X-Ray Computed Tomography","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在计算机断层扫描中,精确的散射校正对获得高质量的重建至关重要。虽然针对这一长期存在的问题已经开发了许多校正策略,但对于光谱 CT 成像来说,可能还需要更多的努力,因为光谱 CT 成像对未建模的偏差特别敏感。在这项工作中,我们在基于模型的一步式材料分解框架内探索了一种联合估算方法,以同时估算光谱 CT 中的材料密度和散射剖面。该方法应用于使用参数相加散射模式获得的模拟幻影数据,并与未建模散射情况进行比较。在这些初步实验中,我们发现这种联合估算方法有可能显著减少与未建模散射相关的伪影,并改进材料密度估算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Joint Material Decomposition and Scatter Estimation for Spectral CT.

Accurate scatter correction is essential to obtain highquality reconstructions in computed tomography. While many correction strategies for this longstanding issue have been developed, additional efforts may be required for spectral CT imaging - which is particularly sensitive to unmodeled biases. In this work we explore a joint estimation approach within a one-step model-based material decomposition framework to simultaneously estimate material densities and scatter profiles in spectral CT. The method is applied to simulated phantom data obtained using a parametric additive scatter mode, and compared to the unmodeled scatter scenario. In these preliminary experiments, We find that this joint estimation approach has the potential to significantly reduce artifacts associated with unmodeled scatter and to improve material density estimates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CT Reconstruction using Nonlinear Diffusion Posterior Sampling with Detector Blur Modeling. CT Material Decomposition using Spectral Diffusion Posterior Sampling. Joint Material Decomposition and Scatter Estimation for Spectral CT. Spectral Orbits: Combining Spectral Imaging and Non-Circular Orbits for Interventional CBCT. Lifelike and Deformable Lung Phantoms for 4DCT Imaging: A Three-Dimensional Printing Approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1