{"title":"基于卷积非线性尖峰神经膜系统的多模态特征交互和对齐的参考图像分割。","authors":"Siyan Sun, Peng Wang, Hong Peng, Zhicai Liu","doi":"10.1142/S0129065724500643","DOIUrl":null,"url":null,"abstract":"<p><p>Referring image segmentation aims to accurately align image pixels and text features for object segmentation based on natural language descriptions. This paper proposes NSNPRIS (convolutional nonlinear spiking neural P systems for referring image segmentation), a novel model based on convolutional nonlinear spiking neural P systems. NSNPRIS features NSNPFusion and Language Gate modules to enhance feature interaction during encoding, along with an NSNPDecoder for feature alignment and decoding. Experimental results on RefCOCO, RefCOCO[Formula: see text], and G-Ref datasets demonstrate that NSNPRIS performs better than mainstream methods. Our contributions include advances in the alignment of pixel and textual features and the improvement of segmentation accuracy.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450064"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Referring Image Segmentation with Multi-Modal Feature Interaction and Alignment Based on Convolutional Nonlinear Spiking Neural Membrane Systems.\",\"authors\":\"Siyan Sun, Peng Wang, Hong Peng, Zhicai Liu\",\"doi\":\"10.1142/S0129065724500643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Referring image segmentation aims to accurately align image pixels and text features for object segmentation based on natural language descriptions. This paper proposes NSNPRIS (convolutional nonlinear spiking neural P systems for referring image segmentation), a novel model based on convolutional nonlinear spiking neural P systems. NSNPRIS features NSNPFusion and Language Gate modules to enhance feature interaction during encoding, along with an NSNPDecoder for feature alignment and decoding. Experimental results on RefCOCO, RefCOCO[Formula: see text], and G-Ref datasets demonstrate that NSNPRIS performs better than mainstream methods. Our contributions include advances in the alignment of pixel and textual features and the improvement of segmentation accuracy.</p>\",\"PeriodicalId\":94052,\"journal\":{\"name\":\"International journal of neural systems\",\"volume\":\" \",\"pages\":\"2450064\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of neural systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129065724500643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neural systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129065724500643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/23 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
参考图像分割的目的是根据自然语言描述,准确对齐图像像素和文本特征,以进行对象分割。本文提出的 NSNPRIS(用于指代图像分割的卷积非线性尖峰神经 P 系统)是一种基于卷积非线性尖峰神经 P 系统的新型模型。NSNPRIS 具有 NSNPFusion 和 Language Gate 模块,可增强编码过程中的特征交互,以及用于特征对齐和解码的 NSNPDecoder。在 RefCOCO、RefCOCO[公式:见正文]和 G-Ref 数据集上的实验结果表明,NSNPRIS 的性能优于主流方法。我们的贡献包括像素和文本特征对齐方面的进步以及分割准确性的提高。
Referring Image Segmentation with Multi-Modal Feature Interaction and Alignment Based on Convolutional Nonlinear Spiking Neural Membrane Systems.
Referring image segmentation aims to accurately align image pixels and text features for object segmentation based on natural language descriptions. This paper proposes NSNPRIS (convolutional nonlinear spiking neural P systems for referring image segmentation), a novel model based on convolutional nonlinear spiking neural P systems. NSNPRIS features NSNPFusion and Language Gate modules to enhance feature interaction during encoding, along with an NSNPDecoder for feature alignment and decoding. Experimental results on RefCOCO, RefCOCO[Formula: see text], and G-Ref datasets demonstrate that NSNPRIS performs better than mainstream methods. Our contributions include advances in the alignment of pixel and textual features and the improvement of segmentation accuracy.