用于糖尿病视网膜病变分类的自监督等变量细化分类网络

Jiacheng Fan, Tiejun Yang, Heng Wang, Huiyao Zhang, Wenjie Zhang, Mingzhu Ji, Jianyu Miao
{"title":"用于糖尿病视网膜病变分类的自监督等变量细化分类网络","authors":"Jiacheng Fan, Tiejun Yang, Heng Wang, Huiyao Zhang, Wenjie Zhang, Mingzhu Ji, Jianyu Miao","doi":"10.1007/s10278-024-01270-z","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic retinopathy (DR) is a retinal disease caused by diabetes. If there is no intervention, it may even lead to blindness. Therefore, the detection of diabetic retinopathy is of great significance for preventing blindness in patients. Most of the existing DR detection methods use supervised methods, which usually require a large number of accurate pixel-level annotations. To solve this problem, we propose a self-supervised Equivariant Refinement Classification Network (ERCN) for DR classification. First, we use an unsupervised contrast pre-training network to learn a more generalized representation. Secondly, the class activation map (CAM) is refined by self-supervision learning. It first uses a spatial masking method to suppress low-confidence predictions, and then uses the feature similarity between pixels to encourage fine-grained activation to achieve more accurate positioning of the lesion. We propose a hybrid equivariant regularization loss to alleviate the degradation caused by the local minimum in the CAM refinement process. To further improve the classification accuracy, we propose an attention-based multi-instance learning (MIL), which weights each element of the feature map as an instance, which is more effective than the traditional patch-based instance extraction method. We evaluate our method on the EyePACS and DAVIS datasets and achieved 87.4% test accuracy in the EyePACS dataset and 88.7% test accuracy in the DAVIS dataset. It shows that the proposed method achieves better performance in DR detection compared with other state-of-the-art methods in self-supervised DR detection.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Self-Supervised Equivariant Refinement Classification Network for Diabetic Retinopathy Classification.\",\"authors\":\"Jiacheng Fan, Tiejun Yang, Heng Wang, Huiyao Zhang, Wenjie Zhang, Mingzhu Ji, Jianyu Miao\",\"doi\":\"10.1007/s10278-024-01270-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetic retinopathy (DR) is a retinal disease caused by diabetes. If there is no intervention, it may even lead to blindness. Therefore, the detection of diabetic retinopathy is of great significance for preventing blindness in patients. Most of the existing DR detection methods use supervised methods, which usually require a large number of accurate pixel-level annotations. To solve this problem, we propose a self-supervised Equivariant Refinement Classification Network (ERCN) for DR classification. First, we use an unsupervised contrast pre-training network to learn a more generalized representation. Secondly, the class activation map (CAM) is refined by self-supervision learning. It first uses a spatial masking method to suppress low-confidence predictions, and then uses the feature similarity between pixels to encourage fine-grained activation to achieve more accurate positioning of the lesion. We propose a hybrid equivariant regularization loss to alleviate the degradation caused by the local minimum in the CAM refinement process. To further improve the classification accuracy, we propose an attention-based multi-instance learning (MIL), which weights each element of the feature map as an instance, which is more effective than the traditional patch-based instance extraction method. We evaluate our method on the EyePACS and DAVIS datasets and achieved 87.4% test accuracy in the EyePACS dataset and 88.7% test accuracy in the DAVIS dataset. It shows that the proposed method achieves better performance in DR detection compared with other state-of-the-art methods in self-supervised DR detection.</p>\",\"PeriodicalId\":516858,\"journal\":{\"name\":\"Journal of imaging informatics in medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of imaging informatics in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-024-01270-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-024-01270-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病视网膜病变(DR)是一种由糖尿病引起的视网膜疾病。如果不加以干预,甚至可能导致失明。因此,检测糖尿病视网膜病变对防止患者失明具有重要意义。现有的糖尿病视网膜病变检测方法大多采用有监督的方法,通常需要大量精确的像素级注释。为了解决这个问题,我们提出了一种用于 DR 分类的自监督等变量细化分类网络(ERCN)。首先,我们使用一个无监督对比度预训练网络来学习一个更具概括性的表征。其次,通过自我监督学习来完善类激活图(CAM)。它首先使用空间掩蔽方法抑制低置信度预测,然后利用像素间的特征相似性鼓励细粒度激活,以实现更准确的病变定位。我们提出了一种混合等变正则化损失,以减轻 CAM 细化过程中局部最小值造成的质量下降。为了进一步提高分类精度,我们提出了基于注意力的多实例学习(MIL)方法,该方法将特征图中的每个元素加权为一个实例,比传统的基于斑块的实例提取方法更有效。我们在 EyePACS 和 DAVIS 数据集上评估了我们的方法,在 EyePACS 数据集上取得了 87.4% 的测试准确率,在 DAVIS 数据集上取得了 88.7% 的测试准确率。这表明,与其他最先进的自监督 DR 检测方法相比,所提出的方法在 DR 检测中取得了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Self-Supervised Equivariant Refinement Classification Network for Diabetic Retinopathy Classification.

Diabetic retinopathy (DR) is a retinal disease caused by diabetes. If there is no intervention, it may even lead to blindness. Therefore, the detection of diabetic retinopathy is of great significance for preventing blindness in patients. Most of the existing DR detection methods use supervised methods, which usually require a large number of accurate pixel-level annotations. To solve this problem, we propose a self-supervised Equivariant Refinement Classification Network (ERCN) for DR classification. First, we use an unsupervised contrast pre-training network to learn a more generalized representation. Secondly, the class activation map (CAM) is refined by self-supervision learning. It first uses a spatial masking method to suppress low-confidence predictions, and then uses the feature similarity between pixels to encourage fine-grained activation to achieve more accurate positioning of the lesion. We propose a hybrid equivariant regularization loss to alleviate the degradation caused by the local minimum in the CAM refinement process. To further improve the classification accuracy, we propose an attention-based multi-instance learning (MIL), which weights each element of the feature map as an instance, which is more effective than the traditional patch-based instance extraction method. We evaluate our method on the EyePACS and DAVIS datasets and achieved 87.4% test accuracy in the EyePACS dataset and 88.7% test accuracy in the DAVIS dataset. It shows that the proposed method achieves better performance in DR detection compared with other state-of-the-art methods in self-supervised DR detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dual Energy CT for Deep Learning-Based Segmentation and Volumetric Estimation of Early Ischemic Infarcts. Empowering Women in Imaging Informatics: Confronting Imposter Syndrome, Addressing Microaggressions, and Striving for Work-Life Harmony. Deep Conformal Supervision: Leveraging Intermediate Features for Robust Uncertainty Quantification. Leveraging Ensemble Models and Follow-up Data for Accurate Prediction of mRS Scores from Radiomic Features of DSC-PWI Images. A Lightweight Method for Breast Cancer Detection Using Thermography Images with Optimized CNN Feature and Efficient Classification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1