用于稳定锌金属阳极的抗膨胀超分子交联水凝胶界面层

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2024-09-23 DOI:10.1002/aenm.202403187
Xuan Luo, Qingshun Nian, Qi Dong, Digen Ruan, Zhuangzhuang Cui, Zihong Wang, Bing-Qing Xiong, Xiaodi Ren
{"title":"用于稳定锌金属阳极的抗膨胀超分子交联水凝胶界面层","authors":"Xuan Luo, Qingshun Nian, Qi Dong, Digen Ruan, Zhuangzhuang Cui, Zihong Wang, Bing-Qing Xiong, Xiaodi Ren","doi":"10.1002/aenm.202403187","DOIUrl":null,"url":null,"abstract":"Aqueous Zn metal batteries show promise for large-scale energy storage but face challenges including dendrite formation, volume changes, and side reactions. This study introduces a novel anti-swelling supramolecule-crosslinked hydrogel (SCH) interphase to stabilize Zn metal anodes. The SCH, composed of cyclodextrin molecules crosslinked with polyvinyl alcohol, offers a multifaceted approach to enhance anode stability. It homogenizes ion flux and suppresses Zn dendrite growth by creating well-defined pathways for Zn<sup>2+</sup> movement. The supramolecular structure selectively traps SO<sub>4</sub><sup>2−</sup> ions, effectively desolvating Zn<sup>2+</sup> and enabling fast ion transportation. Additionally, by disrupting water cluster hydrogen bonds, SCH reduces free water activity, mitigating corrosion at the Zn surface. Electrochemical tests demonstrate the excellent performance of SCH-Zn, with symmetric cells achieve lifespans of 1800 h at 4 mA cm<sup>−2</sup>/2 mAh cm<sup>−2</sup> and 1100 h at 10 mA cm<sup>−2</sup>/5 mAh cm<sup>−2</sup>. Zn||Cu half-cells maintain 99.7% Coulombic efficiency over 500 cycles, while full cells with polyaniline cathodes exhibit stable cycling for 1500 cycles at 5 A g<sup>−1</sup> with no apparent capacity decay. These results highlight the effectiveness of the SCH in stabilizing Zn anodes. This study provides a new interfacial engineering strategy for high-performance aqueous Zn batteries, potentially accelerating their practical implementation in large-scale energy storage.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":null,"pages":null},"PeriodicalIF":24.4000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-Swelling Supramolecule-Crosslinked Hydrogel Interphase for Stable Zn Metal Anodes\",\"authors\":\"Xuan Luo, Qingshun Nian, Qi Dong, Digen Ruan, Zhuangzhuang Cui, Zihong Wang, Bing-Qing Xiong, Xiaodi Ren\",\"doi\":\"10.1002/aenm.202403187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aqueous Zn metal batteries show promise for large-scale energy storage but face challenges including dendrite formation, volume changes, and side reactions. This study introduces a novel anti-swelling supramolecule-crosslinked hydrogel (SCH) interphase to stabilize Zn metal anodes. The SCH, composed of cyclodextrin molecules crosslinked with polyvinyl alcohol, offers a multifaceted approach to enhance anode stability. It homogenizes ion flux and suppresses Zn dendrite growth by creating well-defined pathways for Zn<sup>2+</sup> movement. The supramolecular structure selectively traps SO<sub>4</sub><sup>2−</sup> ions, effectively desolvating Zn<sup>2+</sup> and enabling fast ion transportation. Additionally, by disrupting water cluster hydrogen bonds, SCH reduces free water activity, mitigating corrosion at the Zn surface. Electrochemical tests demonstrate the excellent performance of SCH-Zn, with symmetric cells achieve lifespans of 1800 h at 4 mA cm<sup>−2</sup>/2 mAh cm<sup>−2</sup> and 1100 h at 10 mA cm<sup>−2</sup>/5 mAh cm<sup>−2</sup>. Zn||Cu half-cells maintain 99.7% Coulombic efficiency over 500 cycles, while full cells with polyaniline cathodes exhibit stable cycling for 1500 cycles at 5 A g<sup>−1</sup> with no apparent capacity decay. These results highlight the effectiveness of the SCH in stabilizing Zn anodes. This study provides a new interfacial engineering strategy for high-performance aqueous Zn batteries, potentially accelerating their practical implementation in large-scale energy storage.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202403187\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202403187","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

锌金属水电池有望用于大规模储能,但面临着枝晶形成、体积变化和副反应等挑战。本研究介绍了一种新型抗膨胀超分子交联水凝胶(SCH)中间相,用于稳定锌金属阳极。SCH 由与聚乙烯醇交联的环糊精分子组成,提供了一种增强阳极稳定性的多元方法。它通过创建明确的 Zn2+ 移动路径,使离子通量均匀化,并抑制 Zn 树枝的生长。超分子结构可选择性地捕获 SO42- 离子,有效地使 Zn2+ 脱溶,实现快速离子传输。此外,通过破坏水簇氢键,SCH 还能降低自由水的活性,减轻 Zn 表面的腐蚀。电化学测试证明了 SCH-Zn 的卓越性能,对称电池在 4 mA cm-2/2 mAh cm-2 条件下的寿命为 1800 小时,在 10 mA cm-2/5 mAh cm-2 条件下的寿命为 1100 小时。锌||铜半电池在 500 次循环中保持 99.7% 的库仑效率,而采用聚苯胺阴极的全电池在 5 A g-1 的条件下稳定循环 1500 次,且无明显容量衰减。这些结果凸显了 SCH 在稳定锌阳极方面的有效性。这项研究为高性能水性锌电池提供了一种新的界面工程策略,有可能加速其在大规模储能中的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anti-Swelling Supramolecule-Crosslinked Hydrogel Interphase for Stable Zn Metal Anodes
Aqueous Zn metal batteries show promise for large-scale energy storage but face challenges including dendrite formation, volume changes, and side reactions. This study introduces a novel anti-swelling supramolecule-crosslinked hydrogel (SCH) interphase to stabilize Zn metal anodes. The SCH, composed of cyclodextrin molecules crosslinked with polyvinyl alcohol, offers a multifaceted approach to enhance anode stability. It homogenizes ion flux and suppresses Zn dendrite growth by creating well-defined pathways for Zn2+ movement. The supramolecular structure selectively traps SO42− ions, effectively desolvating Zn2+ and enabling fast ion transportation. Additionally, by disrupting water cluster hydrogen bonds, SCH reduces free water activity, mitigating corrosion at the Zn surface. Electrochemical tests demonstrate the excellent performance of SCH-Zn, with symmetric cells achieve lifespans of 1800 h at 4 mA cm−2/2 mAh cm−2 and 1100 h at 10 mA cm−2/5 mAh cm−2. Zn||Cu half-cells maintain 99.7% Coulombic efficiency over 500 cycles, while full cells with polyaniline cathodes exhibit stable cycling for 1500 cycles at 5 A g−1 with no apparent capacity decay. These results highlight the effectiveness of the SCH in stabilizing Zn anodes. This study provides a new interfacial engineering strategy for high-performance aqueous Zn batteries, potentially accelerating their practical implementation in large-scale energy storage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Revolutionizing Oxygen Evolution Reaction Catalysts: Efficient and Ultrastable Interstitial W-Doped NiFe-LDHs/MOFs through Controlled Topological Conversion of Metal-Organic Frameworks (Adv. Energy Mater. 37/2024) A Bio-Inspired Dendritic MoOx Electrocatalyst for Efficient Electrochemical Nitrate Reduction to Ammonia (Adv. Energy Mater. 37/2024) Topological-Insulator Nanocomposite and Graphite-Like Tribo-Charge-Accumulating Fabric Enabling High-performance Non-Contact Stretchable and Textile-Based Triboelectric Nanogenerators with Robust Charge Retention (Adv. Energy Mater. 37/2024) Masthead: (Adv. Energy Mater. 37/2024) Advancing Charge Density in Temperature-Dependent Amphiphile Metal–Organic Polyhedra-Based Triboelectric Nanogenerators (Adv. Energy Mater. 37/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1