Haoran Gao, Zhikun Xu, Shuangyan Lin, Yujing Sun, Lin Li
{"title":"构建三相 MnS2/Co4S3/Ni3S2 异质结构,促进氧气进化。","authors":"Haoran Gao, Zhikun Xu, Shuangyan Lin, Yujing Sun, Lin Li","doi":"10.1021/acs.langmuir.4c02475","DOIUrl":null,"url":null,"abstract":"<p><p>The rational construction of highly efficient electrocatalysts for the oxygen evolution reaction (OER) plays a critical role in energy conversion systems. Designing heterostructures is a common and effective strategy to improve the performance of electrocatalysts. In this paper, an MnS<sub>2</sub>/Co<sub>4</sub>S<sub>3</sub>/Ni<sub>3</sub>S<sub>2</sub> heterostructure was synthesized on Ni foam using a one-step vulcanization method. It provides a modified electronic structure and plentiful three-phase heterogeneous interfaces that can effectively enrich the active sites and accelerate electron transfer, thereby improving the OER activity. Thanks to the heterostructure, the MnS<sub>2</sub>/Co<sub>4</sub>S<sub>3</sub>/Ni<sub>3</sub>S<sub>2</sub> exhibits a low overpotential of 265 and 304 mV for the OER to reach current densities of 50 and 100 mA/cm<sup>2</sup>, respectively. Furthermore, the surface reconstruction of MnS<sub>2</sub>/Co<sub>4</sub>S<sub>3</sub>/Ni<sub>3</sub>S<sub>2</sub> has been investigated, which revealed the formation of metal hydr(oxy)oxides evolved during the OER process. This work provides a facile strategy for constructing three-phase heterostructures, shedding light on the development of high-performance, nonprecious metal-based OER electrocatalysts.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of a Three-Phase MnS<sub>2</sub>/Co<sub>4</sub>S<sub>3</sub>/Ni<sub>3</sub>S<sub>2</sub> Heterostructure for Boosting Oxygen Evolution.\",\"authors\":\"Haoran Gao, Zhikun Xu, Shuangyan Lin, Yujing Sun, Lin Li\",\"doi\":\"10.1021/acs.langmuir.4c02475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rational construction of highly efficient electrocatalysts for the oxygen evolution reaction (OER) plays a critical role in energy conversion systems. Designing heterostructures is a common and effective strategy to improve the performance of electrocatalysts. In this paper, an MnS<sub>2</sub>/Co<sub>4</sub>S<sub>3</sub>/Ni<sub>3</sub>S<sub>2</sub> heterostructure was synthesized on Ni foam using a one-step vulcanization method. It provides a modified electronic structure and plentiful three-phase heterogeneous interfaces that can effectively enrich the active sites and accelerate electron transfer, thereby improving the OER activity. Thanks to the heterostructure, the MnS<sub>2</sub>/Co<sub>4</sub>S<sub>3</sub>/Ni<sub>3</sub>S<sub>2</sub> exhibits a low overpotential of 265 and 304 mV for the OER to reach current densities of 50 and 100 mA/cm<sup>2</sup>, respectively. Furthermore, the surface reconstruction of MnS<sub>2</sub>/Co<sub>4</sub>S<sub>3</sub>/Ni<sub>3</sub>S<sub>2</sub> has been investigated, which revealed the formation of metal hydr(oxy)oxides evolved during the OER process. This work provides a facile strategy for constructing three-phase heterostructures, shedding light on the development of high-performance, nonprecious metal-based OER electrocatalysts.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c02475\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c02475","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
合理构建用于氧进化反应(OER)的高效电催化剂在能源转换系统中发挥着至关重要的作用。设计异质结构是提高电催化剂性能的一种常见而有效的策略。本文采用一步硫化法在泡沫镍上合成了 MnS2/Co4S3/Ni3S2 异质结构。它提供了改良的电子结构和丰富的三相异质界面,能有效地丰富活性位点并加速电子传递,从而提高 OER 活性。得益于这种异质结构,MnS2/Co4S3/Ni3S2 的过电位分别为 265 和 304 mV,OER 的电流密度分别达到 50 和 100 mA/cm2。此外,还研究了 MnS2/Co4S3/Ni3S2 的表面重构,发现在 OER 过程中形成了金属氢(氧)氧化物。这项工作提供了一种构建三相异质结构的简便策略,为开发高性能、非贵金属基 OER 电催化剂提供了启示。
Construction of a Three-Phase MnS2/Co4S3/Ni3S2 Heterostructure for Boosting Oxygen Evolution.
The rational construction of highly efficient electrocatalysts for the oxygen evolution reaction (OER) plays a critical role in energy conversion systems. Designing heterostructures is a common and effective strategy to improve the performance of electrocatalysts. In this paper, an MnS2/Co4S3/Ni3S2 heterostructure was synthesized on Ni foam using a one-step vulcanization method. It provides a modified electronic structure and plentiful three-phase heterogeneous interfaces that can effectively enrich the active sites and accelerate electron transfer, thereby improving the OER activity. Thanks to the heterostructure, the MnS2/Co4S3/Ni3S2 exhibits a low overpotential of 265 and 304 mV for the OER to reach current densities of 50 and 100 mA/cm2, respectively. Furthermore, the surface reconstruction of MnS2/Co4S3/Ni3S2 has been investigated, which revealed the formation of metal hydr(oxy)oxides evolved during the OER process. This work provides a facile strategy for constructing three-phase heterostructures, shedding light on the development of high-performance, nonprecious metal-based OER electrocatalysts.