Sara Demartis, Camila J Picco, Eneko Larrañeta, Anna Korelidou, Rayhanul Islam, Jonathan A Coulter, Paolo Giunchedi, Ryan F Donnelly, Giovanna Rassu, Elisabetta Gavini
{"title":"评估 PCL/PLA 植入物中的玫瑰红-PVA 组合物在持续治疗癌症方面的功效。","authors":"Sara Demartis, Camila J Picco, Eneko Larrañeta, Anna Korelidou, Rayhanul Islam, Jonathan A Coulter, Paolo Giunchedi, Ryan F Donnelly, Giovanna Rassu, Elisabetta Gavini","doi":"10.1007/s13346-024-01711-w","DOIUrl":null,"url":null,"abstract":"<p><p>The current investigation aims to address the limitations of conventional cancer therapy by developing an advanced, long-term drug delivery system using biocompatible Rose Bengal (RB)-loaded polyvinyl alcohol (PVA) matrices incorporated into 3D printed polycaprolactone (PCL) and polylactic acid (PLA) implants. The anticancer drug RB's high solubility and low lipophilicity require frequent and painful administration to the tumour site, limiting its clinical application. In this study, RB was encapsulated in a PVA (RB@PVA) matrix to overcome these challenges and achieve a localised and sustained drug release system within a biodegradable implant designed to be implanted near the tumour site. The RB@PVA matrix demonstrated an RB loading efficiency of 77.34 ± 1.53%, with complete RB release within 30 min. However, when integrated into implants, the system provided a sustained RB release of 75.84 ± 8.75% over 90 days. Cytotoxicity assays on PC-3 prostate cancer cells indicated an IC50 value of 1.19 µM for RB@PVA compared to 2.49 µM for free RB, effectively inhibiting cancer cell proliferation. This innovative drug delivery system, which incorporates a polymer matrix within an implantable device, represents a significant advancement in the sustained release of hydrosoluble drugs. It holds promise for reducing the frequency of drug administration, thereby improving patient compliance and translating experimental research into practical therapeutic applications.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating the efficacy of Rose Bengal-PVA combinations within PCL/PLA implants for sustained cancer treatment.\",\"authors\":\"Sara Demartis, Camila J Picco, Eneko Larrañeta, Anna Korelidou, Rayhanul Islam, Jonathan A Coulter, Paolo Giunchedi, Ryan F Donnelly, Giovanna Rassu, Elisabetta Gavini\",\"doi\":\"10.1007/s13346-024-01711-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The current investigation aims to address the limitations of conventional cancer therapy by developing an advanced, long-term drug delivery system using biocompatible Rose Bengal (RB)-loaded polyvinyl alcohol (PVA) matrices incorporated into 3D printed polycaprolactone (PCL) and polylactic acid (PLA) implants. The anticancer drug RB's high solubility and low lipophilicity require frequent and painful administration to the tumour site, limiting its clinical application. In this study, RB was encapsulated in a PVA (RB@PVA) matrix to overcome these challenges and achieve a localised and sustained drug release system within a biodegradable implant designed to be implanted near the tumour site. The RB@PVA matrix demonstrated an RB loading efficiency of 77.34 ± 1.53%, with complete RB release within 30 min. However, when integrated into implants, the system provided a sustained RB release of 75.84 ± 8.75% over 90 days. Cytotoxicity assays on PC-3 prostate cancer cells indicated an IC50 value of 1.19 µM for RB@PVA compared to 2.49 µM for free RB, effectively inhibiting cancer cell proliferation. This innovative drug delivery system, which incorporates a polymer matrix within an implantable device, represents a significant advancement in the sustained release of hydrosoluble drugs. It holds promise for reducing the frequency of drug administration, thereby improving patient compliance and translating experimental research into practical therapeutic applications.</p>\",\"PeriodicalId\":11357,\"journal\":{\"name\":\"Drug Delivery and Translational Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Delivery and Translational Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13346-024-01711-w\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-024-01711-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Evaluating the efficacy of Rose Bengal-PVA combinations within PCL/PLA implants for sustained cancer treatment.
The current investigation aims to address the limitations of conventional cancer therapy by developing an advanced, long-term drug delivery system using biocompatible Rose Bengal (RB)-loaded polyvinyl alcohol (PVA) matrices incorporated into 3D printed polycaprolactone (PCL) and polylactic acid (PLA) implants. The anticancer drug RB's high solubility and low lipophilicity require frequent and painful administration to the tumour site, limiting its clinical application. In this study, RB was encapsulated in a PVA (RB@PVA) matrix to overcome these challenges and achieve a localised and sustained drug release system within a biodegradable implant designed to be implanted near the tumour site. The RB@PVA matrix demonstrated an RB loading efficiency of 77.34 ± 1.53%, with complete RB release within 30 min. However, when integrated into implants, the system provided a sustained RB release of 75.84 ± 8.75% over 90 days. Cytotoxicity assays on PC-3 prostate cancer cells indicated an IC50 value of 1.19 µM for RB@PVA compared to 2.49 µM for free RB, effectively inhibiting cancer cell proliferation. This innovative drug delivery system, which incorporates a polymer matrix within an implantable device, represents a significant advancement in the sustained release of hydrosoluble drugs. It holds promise for reducing the frequency of drug administration, thereby improving patient compliance and translating experimental research into practical therapeutic applications.
期刊介绍:
The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions.
Research focused on the following areas of translational drug delivery research will be considered for publication in the journal.
Designing and developing novel drug delivery systems, with a focus on their application to disease conditions;
Preclinical and clinical data related to drug delivery systems;
Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes
Short-term and long-term biocompatibility of drug delivery systems, host response;
Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering;
Image-guided drug therapy,
Nanomedicine;
Devices for drug delivery and drug/device combination products.
In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.