对原位成型聚酯植入物用于延长卡维地洛释放时间的体外和体内评估。

IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Drug Delivery and Translational Research Pub Date : 2024-09-23 DOI:10.1007/s13346-024-01706-7
Samer R Abulateefeh, Raghad M Abuhamdan, Husam Saed, Mohammad Alsalem, Khaldoun Shnewer
{"title":"对原位成型聚酯植入物用于延长卡维地洛释放时间的体外和体内评估。","authors":"Samer R Abulateefeh, Raghad M Abuhamdan, Husam Saed, Mohammad Alsalem, Khaldoun Shnewer","doi":"10.1007/s13346-024-01706-7","DOIUrl":null,"url":null,"abstract":"<p><p>Polyester based in situ forming implants (ISFIs) are injectable long-acting drug delivery systems that offer a wide range of unique advantages. As a result of these advantages, two relatively high molecular weight, ester terminated grades of poly (D,L-lactide-co-glycolide) (PLGA) and poly(D,L-lactide) (PLA) were evaluated for their ability (i) to form ISFIs loaded with carvedilol, and (ii) to control its release both in vitro and in vivo. At a polymeric concentration of 40% w/w, implant solutions were syringeable, injectable, and able to encapsulate carvedilol to a high degree (encapsulated drug% > 97%). When visualized using scanning electron microscopy (SEM), implants were found to have a dense thin surface atop porous sublayers. As for their in vitro evaluation, PLGA and PLA implants were able to maintain drug release over the course of 49 and 84 days, respectively. On the other hand, in vivo drug release from both implants was almost identical and lasted for only 42 days. This may be due to the overriding effect of the similar host environment at the injection site that diminished the effect of polymeric physiochemistry on phase inversion and drug release. Lastly, while the polymer-free drug/NMP solution completely released its drug content within the initial half hour in vitro, the formulation extended drug release in vivo. This could be due to a yet to be investigated interaction between carvedilol and NMP under in vivo conditions. These results cement the significance of formulating carvedilol loaded ISFIs for the management of chronic conditions.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In vitro and in vivo evaluation of in situ forming polyester implants for the extended release of carvedilol.\",\"authors\":\"Samer R Abulateefeh, Raghad M Abuhamdan, Husam Saed, Mohammad Alsalem, Khaldoun Shnewer\",\"doi\":\"10.1007/s13346-024-01706-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polyester based in situ forming implants (ISFIs) are injectable long-acting drug delivery systems that offer a wide range of unique advantages. As a result of these advantages, two relatively high molecular weight, ester terminated grades of poly (D,L-lactide-co-glycolide) (PLGA) and poly(D,L-lactide) (PLA) were evaluated for their ability (i) to form ISFIs loaded with carvedilol, and (ii) to control its release both in vitro and in vivo. At a polymeric concentration of 40% w/w, implant solutions were syringeable, injectable, and able to encapsulate carvedilol to a high degree (encapsulated drug% > 97%). When visualized using scanning electron microscopy (SEM), implants were found to have a dense thin surface atop porous sublayers. As for their in vitro evaluation, PLGA and PLA implants were able to maintain drug release over the course of 49 and 84 days, respectively. On the other hand, in vivo drug release from both implants was almost identical and lasted for only 42 days. This may be due to the overriding effect of the similar host environment at the injection site that diminished the effect of polymeric physiochemistry on phase inversion and drug release. Lastly, while the polymer-free drug/NMP solution completely released its drug content within the initial half hour in vitro, the formulation extended drug release in vivo. This could be due to a yet to be investigated interaction between carvedilol and NMP under in vivo conditions. These results cement the significance of formulating carvedilol loaded ISFIs for the management of chronic conditions.</p>\",\"PeriodicalId\":11357,\"journal\":{\"name\":\"Drug Delivery and Translational Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Delivery and Translational Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13346-024-01706-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-024-01706-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

聚酯基原位成型植入物(ISFIs)是一种可注射的长效给药系统,具有广泛的独特优势。基于这些优势,我们对两种分子量相对较高、以酯为末端的聚(D,L-内酰胺-共聚乙二醇)(PLGA)和聚(D,L-内酰胺)(PLA)进行了评估,以确定它们是否能够(i)形成装载卡维地洛的 ISFIs,以及(ii)在体外和体内控制卡维地洛的释放。当聚合物浓度为 40% w/w 时,植入溶液可注射,可注入,并能高度包裹卡维地洛(药物包裹率大于 97%)。使用扫描电子显微镜(SEM)观察时发现,植入物在多孔底层上有一个致密的薄表面。在体外评估方面,PLGA 和聚乳酸植入物分别能在 49 天和 84 天内保持药物释放。另一方面,两种植入物的体内药物释放几乎相同,都只持续了 42 天。这可能是由于注射部位相似的宿主环境产生了压倒性效应,削弱了聚合物生理化学对相位反转和药物释放的影响。最后,虽然不含聚合物的药物/NMP 溶液在体外最初半小时内就完全释放了药物成分,但该制剂却延长了药物在体内的释放时间。这可能是由于卡维地洛和 NMP 在体内条件下的相互作用尚待研究。这些结果巩固了配制卡维地洛负载型 ISFIs 用于慢性病治疗的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In vitro and in vivo evaluation of in situ forming polyester implants for the extended release of carvedilol.

Polyester based in situ forming implants (ISFIs) are injectable long-acting drug delivery systems that offer a wide range of unique advantages. As a result of these advantages, two relatively high molecular weight, ester terminated grades of poly (D,L-lactide-co-glycolide) (PLGA) and poly(D,L-lactide) (PLA) were evaluated for their ability (i) to form ISFIs loaded with carvedilol, and (ii) to control its release both in vitro and in vivo. At a polymeric concentration of 40% w/w, implant solutions were syringeable, injectable, and able to encapsulate carvedilol to a high degree (encapsulated drug% > 97%). When visualized using scanning electron microscopy (SEM), implants were found to have a dense thin surface atop porous sublayers. As for their in vitro evaluation, PLGA and PLA implants were able to maintain drug release over the course of 49 and 84 days, respectively. On the other hand, in vivo drug release from both implants was almost identical and lasted for only 42 days. This may be due to the overriding effect of the similar host environment at the injection site that diminished the effect of polymeric physiochemistry on phase inversion and drug release. Lastly, while the polymer-free drug/NMP solution completely released its drug content within the initial half hour in vitro, the formulation extended drug release in vivo. This could be due to a yet to be investigated interaction between carvedilol and NMP under in vivo conditions. These results cement the significance of formulating carvedilol loaded ISFIs for the management of chronic conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Delivery and Translational Research
Drug Delivery and Translational Research MEDICINE, RESEARCH & EXPERIMENTALPHARMACOL-PHARMACOLOGY & PHARMACY
CiteScore
11.70
自引率
1.90%
发文量
160
期刊介绍: The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions. Research focused on the following areas of translational drug delivery research will be considered for publication in the journal. Designing and developing novel drug delivery systems, with a focus on their application to disease conditions; Preclinical and clinical data related to drug delivery systems; Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes Short-term and long-term biocompatibility of drug delivery systems, host response; Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering; Image-guided drug therapy, Nanomedicine; Devices for drug delivery and drug/device combination products. In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.
期刊最新文献
Local delivery of doxorubicin prodrug via lipid nanocapsule-based hydrogel for the treatment of glioblastoma. Microvesicle-eluting nano-engineered implants influence inflammatory response of keratinocytes. 3D-printed Laponite/Alginate hydrogel-based suppositories for versatile drug loading and release. Resveratrol-loaded invasome gel: A promising nanoformulation for treatment of skin cancer. Nanocrystals and nanosuspensions: an exploration from classic formulations to advanced drug delivery systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1