捕食性原生生物通过促进植物生长的根瘤菌联合体影响植物的表现。

IF 10.8 1区 环境科学与生态学 Q1 ECOLOGY ISME Journal Pub Date : 2024-09-23 DOI:10.1093/ismejo/wrae180
Sai Guo, Stefan Geisen, Yani Mo, Xinyue Yan, Ruoling Huang, Hongjun Liu, Zhilei Gao, Chengyuan Tao, Xuhui Deng, Wu Xiong, Qirong Shen, George A Kowalchuk, Rong Li
{"title":"捕食性原生生物通过促进植物生长的根瘤菌联合体影响植物的表现。","authors":"Sai Guo, Stefan Geisen, Yani Mo, Xinyue Yan, Ruoling Huang, Hongjun Liu, Zhilei Gao, Chengyuan Tao, Xuhui Deng, Wu Xiong, Qirong Shen, George A Kowalchuk, Rong Li","doi":"10.1093/ismejo/wrae180","DOIUrl":null,"url":null,"abstract":"<p><p>Plant performance is impacted by rhizosphere bacteria. These bacteria are subjected to both bottom-up control by root exudates as well as top-down control by predators, particularly protists. Protists stimulate plant growth-promoting microbes resulting in improved plant performance. However, knowledge of the mechanisms that determine the interconnections within such tripartite protist-bacteria-plant interactions remains limited. We conducted experiments examining the effects of different densities of the predatory protist Cercomonas lenta on rhizosphere bacterial communities, specifically zooming on interactions between Cercomonas lenta and key bacterial taxa, as well as interactions among key bacterial taxa. We tracked rhizosphere bacterial community composition, potential microbial interactions, and plant performance. We found that Cercomonas lenta inoculation led to an average increase in plant biomass of 92.0%. This effect was linked to an increase in plant growth-promoting rhizobacteria (Pseudomonas and Sphingomonas) and a decrease in bacteria (Chitinophaga) that negatively impact on plant growth-promoting rhizobacteria. We also found evidence for cooperative enhancements in biofilm formation within the plant growth-promoting rhizobacterial consortium. Cercomonas lenta enhanced a plant growth-promoting rhizobacterial consortium colonization by promoting its cooperative biofilm formation in the rhizosphere, leading to a 14.5% increase in phosphate solubilization that benefits plant growth. Taken together, we provide mechanistic insights into how the predatory protist Cercomonas lenta impacts plant growth, namely by stimulating plant beneficial microbes and enhancing their interactive activities such as biofilm formation. Predatory protists may therefore represent promising biological agents that can contribute to sustainable agricultural practices by promoting interactions between the plant and its microbiome.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":null,"pages":null},"PeriodicalIF":10.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predatory protists impact plant performance by promoting plant growth-promoting rhizobacterial consortia.\",\"authors\":\"Sai Guo, Stefan Geisen, Yani Mo, Xinyue Yan, Ruoling Huang, Hongjun Liu, Zhilei Gao, Chengyuan Tao, Xuhui Deng, Wu Xiong, Qirong Shen, George A Kowalchuk, Rong Li\",\"doi\":\"10.1093/ismejo/wrae180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plant performance is impacted by rhizosphere bacteria. These bacteria are subjected to both bottom-up control by root exudates as well as top-down control by predators, particularly protists. Protists stimulate plant growth-promoting microbes resulting in improved plant performance. However, knowledge of the mechanisms that determine the interconnections within such tripartite protist-bacteria-plant interactions remains limited. We conducted experiments examining the effects of different densities of the predatory protist Cercomonas lenta on rhizosphere bacterial communities, specifically zooming on interactions between Cercomonas lenta and key bacterial taxa, as well as interactions among key bacterial taxa. We tracked rhizosphere bacterial community composition, potential microbial interactions, and plant performance. We found that Cercomonas lenta inoculation led to an average increase in plant biomass of 92.0%. This effect was linked to an increase in plant growth-promoting rhizobacteria (Pseudomonas and Sphingomonas) and a decrease in bacteria (Chitinophaga) that negatively impact on plant growth-promoting rhizobacteria. We also found evidence for cooperative enhancements in biofilm formation within the plant growth-promoting rhizobacterial consortium. Cercomonas lenta enhanced a plant growth-promoting rhizobacterial consortium colonization by promoting its cooperative biofilm formation in the rhizosphere, leading to a 14.5% increase in phosphate solubilization that benefits plant growth. Taken together, we provide mechanistic insights into how the predatory protist Cercomonas lenta impacts plant growth, namely by stimulating plant beneficial microbes and enhancing their interactive activities such as biofilm formation. Predatory protists may therefore represent promising biological agents that can contribute to sustainable agricultural practices by promoting interactions between the plant and its microbiome.</p>\",\"PeriodicalId\":50271,\"journal\":{\"name\":\"ISME Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISME Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/ismejo/wrae180\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae180","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

植物的表现受到根瘤菌的影响。这些细菌既受到根部渗出物自下而上的控制,也受到天敌(尤其是原生动物)自上而下的控制。原生动物会刺激促进植物生长的微生物,从而提高植物的生长性能。然而,人们对这种原生生物-细菌-植物三方相互作用的相互联系机制的了解仍然有限。我们进行了实验,研究捕食性原生动物 Cercomonas lenta 的不同密度对根圈细菌群落的影响,特别是 Cercomonas lenta 与关键细菌类群之间的相互作用,以及关键细菌类群之间的相互作用。我们跟踪了根圈细菌群落的组成、潜在的微生物相互作用以及植物的表现。我们发现,接种 Cercomonas lenta 能使植物生物量平均增加 92.0%。这种效果与促进植物生长的根瘤菌(假单胞菌和鞘氨单胞菌)的增加以及对促进植物生长的根瘤菌有负面影响的细菌(嗜壳菌)的减少有关。我们还发现了植物生长促进根瘤菌联合体内生物膜形成合作增强的证据。银耳雪腐镰刀菌通过促进其在根瘤菌群中合作形成生物膜,提高了植物生长促进根瘤菌群的定植率,从而使磷酸盐溶解度提高了 14.5%,有利于植物生长。综上所述,我们从机理上揭示了捕食性原生动物 Cercomonas lenta 如何影响植物生长,即通过刺激植物有益微生物并增强它们的互动活动,如生物膜的形成。因此,捕食性原生动物可能是有前途的生物制剂,可以通过促进植物与其微生物组之间的相互作用,为可持续农业实践做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predatory protists impact plant performance by promoting plant growth-promoting rhizobacterial consortia.

Plant performance is impacted by rhizosphere bacteria. These bacteria are subjected to both bottom-up control by root exudates as well as top-down control by predators, particularly protists. Protists stimulate plant growth-promoting microbes resulting in improved plant performance. However, knowledge of the mechanisms that determine the interconnections within such tripartite protist-bacteria-plant interactions remains limited. We conducted experiments examining the effects of different densities of the predatory protist Cercomonas lenta on rhizosphere bacterial communities, specifically zooming on interactions between Cercomonas lenta and key bacterial taxa, as well as interactions among key bacterial taxa. We tracked rhizosphere bacterial community composition, potential microbial interactions, and plant performance. We found that Cercomonas lenta inoculation led to an average increase in plant biomass of 92.0%. This effect was linked to an increase in plant growth-promoting rhizobacteria (Pseudomonas and Sphingomonas) and a decrease in bacteria (Chitinophaga) that negatively impact on plant growth-promoting rhizobacteria. We also found evidence for cooperative enhancements in biofilm formation within the plant growth-promoting rhizobacterial consortium. Cercomonas lenta enhanced a plant growth-promoting rhizobacterial consortium colonization by promoting its cooperative biofilm formation in the rhizosphere, leading to a 14.5% increase in phosphate solubilization that benefits plant growth. Taken together, we provide mechanistic insights into how the predatory protist Cercomonas lenta impacts plant growth, namely by stimulating plant beneficial microbes and enhancing their interactive activities such as biofilm formation. Predatory protists may therefore represent promising biological agents that can contribute to sustainable agricultural practices by promoting interactions between the plant and its microbiome.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ISME Journal
ISME Journal 环境科学-生态学
CiteScore
22.10
自引率
2.70%
发文量
171
审稿时长
2.6 months
期刊介绍: The ISME Journal covers the diverse and integrated areas of microbial ecology. We encourage contributions that represent major advances for the study of microbial ecosystems, communities, and interactions of microorganisms in the environment. Articles in The ISME Journal describe pioneering discoveries of wide appeal that enhance our understanding of functional and mechanistic relationships among microorganisms, their communities, and their habitats.
期刊最新文献
High-sugar diet leads to loss of beneficial probiotics in housefly larvae guts. Leveraging genomic information to predict environmental preferences of bacteria. Recruitment of complete crAss-like phage genomes reveals their presence in chicken viromes, few human-specific phages, and lack of universal detection. Abiotic factors shape mosquito microbiomes that enhance host development. Predatory protists impact plant performance by promoting plant growth-promoting rhizobacterial consortia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1