Lukas Graf, Henrik Thurfjell, Göran Ericsson, Wiebke Neumann
{"title":"天真与小牛同归于尽:人类猎手捕杀小牛后,这种寿命长但被大量捕杀的动物的行为发生了改变。","authors":"Lukas Graf, Henrik Thurfjell, Göran Ericsson, Wiebke Neumann","doi":"10.1186/s40462-024-00506-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In prey, patterns of individual habitat selection and movement can be a consequence of an individuals' anti-predator behavior. Adjustments of anti-predator behavior are important for prey to increase their survival. Hunters may alter the anti-predator behavior of prey. In long-lived animals, experience may cause behavioral changes during individuals' lifetime, which may result in altered habitat selection and movement. Our knowledge of which specific events related to hunting activity induce behavioral changes in solitary living species is still limited.</p><p><strong>Methods: </strong>We used offspring loss in a solitary and long-lived ungulate species, moose (Alces alces), as our model system. We investigated whether offspring loss to hunters induces behavioral changes in a species subjected to heavy human harvest but free from natural predation. To test for behavioral change in relation to two proxies for experience (calf fate and age), we combined movement data from 51 adult female moose with data on their offspring survival and female age. We tested for adjustments in females' habitat selection and movement following calf harvest using Hidden Markov Models and integrated Step Selection Analysis to obtain behavioral state specific habitat selection coefficients.</p><p><strong>Results: </strong>We found that females with a harvested calf modified habitat selection and movement during the following hunting season. Female moose selected for shorter distance to roads during the night, selected for shorter distance to forests and greater distance to human settlements following calf harvest than females who had not lost a calf. The survival of twins in a given hunting season was related to female age. Older females we more likely to have twins survive the hunting season.</p><p><strong>Conclusions: </strong>Our findings suggest that losing offspring to human harvest imposes behavioral changes in a long-lived ungulate species, leading to adjustments in females' habitat selection and movement behavior, which may lower the risk of encountering hunters. In our study, female moose that experienced calf loss selected for lower distance to forest and selected for greater distance to human settlements during periods of high hunting pressure compared to females without the experience of calf loss during the previous hunting season. We interpret this as potential learning effects.</p>","PeriodicalId":54288,"journal":{"name":"Movement Ecology","volume":"12 1","pages":"66"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11421125/pdf/","citationCount":"0","resultStr":"{\"title\":\"Naivety dies with the calf: calf loss to human hunters imposes behavioral change in a long-lived but heavily harvested ungulate.\",\"authors\":\"Lukas Graf, Henrik Thurfjell, Göran Ericsson, Wiebke Neumann\",\"doi\":\"10.1186/s40462-024-00506-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>In prey, patterns of individual habitat selection and movement can be a consequence of an individuals' anti-predator behavior. Adjustments of anti-predator behavior are important for prey to increase their survival. Hunters may alter the anti-predator behavior of prey. In long-lived animals, experience may cause behavioral changes during individuals' lifetime, which may result in altered habitat selection and movement. Our knowledge of which specific events related to hunting activity induce behavioral changes in solitary living species is still limited.</p><p><strong>Methods: </strong>We used offspring loss in a solitary and long-lived ungulate species, moose (Alces alces), as our model system. We investigated whether offspring loss to hunters induces behavioral changes in a species subjected to heavy human harvest but free from natural predation. To test for behavioral change in relation to two proxies for experience (calf fate and age), we combined movement data from 51 adult female moose with data on their offspring survival and female age. We tested for adjustments in females' habitat selection and movement following calf harvest using Hidden Markov Models and integrated Step Selection Analysis to obtain behavioral state specific habitat selection coefficients.</p><p><strong>Results: </strong>We found that females with a harvested calf modified habitat selection and movement during the following hunting season. Female moose selected for shorter distance to roads during the night, selected for shorter distance to forests and greater distance to human settlements following calf harvest than females who had not lost a calf. The survival of twins in a given hunting season was related to female age. Older females we more likely to have twins survive the hunting season.</p><p><strong>Conclusions: </strong>Our findings suggest that losing offspring to human harvest imposes behavioral changes in a long-lived ungulate species, leading to adjustments in females' habitat selection and movement behavior, which may lower the risk of encountering hunters. In our study, female moose that experienced calf loss selected for lower distance to forest and selected for greater distance to human settlements during periods of high hunting pressure compared to females without the experience of calf loss during the previous hunting season. We interpret this as potential learning effects.</p>\",\"PeriodicalId\":54288,\"journal\":{\"name\":\"Movement Ecology\",\"volume\":\"12 1\",\"pages\":\"66\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11421125/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Movement Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40462-024-00506-5\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Movement Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40462-024-00506-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Naivety dies with the calf: calf loss to human hunters imposes behavioral change in a long-lived but heavily harvested ungulate.
Background: In prey, patterns of individual habitat selection and movement can be a consequence of an individuals' anti-predator behavior. Adjustments of anti-predator behavior are important for prey to increase their survival. Hunters may alter the anti-predator behavior of prey. In long-lived animals, experience may cause behavioral changes during individuals' lifetime, which may result in altered habitat selection and movement. Our knowledge of which specific events related to hunting activity induce behavioral changes in solitary living species is still limited.
Methods: We used offspring loss in a solitary and long-lived ungulate species, moose (Alces alces), as our model system. We investigated whether offspring loss to hunters induces behavioral changes in a species subjected to heavy human harvest but free from natural predation. To test for behavioral change in relation to two proxies for experience (calf fate and age), we combined movement data from 51 adult female moose with data on their offspring survival and female age. We tested for adjustments in females' habitat selection and movement following calf harvest using Hidden Markov Models and integrated Step Selection Analysis to obtain behavioral state specific habitat selection coefficients.
Results: We found that females with a harvested calf modified habitat selection and movement during the following hunting season. Female moose selected for shorter distance to roads during the night, selected for shorter distance to forests and greater distance to human settlements following calf harvest than females who had not lost a calf. The survival of twins in a given hunting season was related to female age. Older females we more likely to have twins survive the hunting season.
Conclusions: Our findings suggest that losing offspring to human harvest imposes behavioral changes in a long-lived ungulate species, leading to adjustments in females' habitat selection and movement behavior, which may lower the risk of encountering hunters. In our study, female moose that experienced calf loss selected for lower distance to forest and selected for greater distance to human settlements during periods of high hunting pressure compared to females without the experience of calf loss during the previous hunting season. We interpret this as potential learning effects.
Movement EcologyAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.60
自引率
4.90%
发文量
47
审稿时长
23 weeks
期刊介绍:
Movement Ecology is an open-access interdisciplinary journal publishing novel insights from empirical and theoretical approaches into the ecology of movement of the whole organism - either animals, plants or microorganisms - as the central theme. We welcome manuscripts on any taxa and any movement phenomena (e.g. foraging, dispersal and seasonal migration) addressing important research questions on the patterns, mechanisms, causes and consequences of organismal movement. Manuscripts will be rigorously peer-reviewed to ensure novelty and high quality.