废弃风力涡轮机叶片中的聚对苯二甲酸乙二醇酯和环氧树脂的快速共热解特性

IF 5.6 2区 工程技术 Q2 ENERGY & FUELS Journal of The Energy Institute Pub Date : 2024-09-21 DOI:10.1016/j.joei.2024.101841
Yong Yao , Yang Cao , Mumin Rao , Rui Shan , Jun Zhang
{"title":"废弃风力涡轮机叶片中的聚对苯二甲酸乙二醇酯和环氧树脂的快速共热解特性","authors":"Yong Yao ,&nbsp;Yang Cao ,&nbsp;Mumin Rao ,&nbsp;Rui Shan ,&nbsp;Jun Zhang","doi":"10.1016/j.joei.2024.101841","DOIUrl":null,"url":null,"abstract":"<div><div>The present study systematically investigated the fast co-pyrolysis characteristics of epoxy resin and polyethylene terephthalate (PET) derived from waste wind turbine blades, with the aim of uncovering the possible synergistic effect in co-pyrolysis. The co-pyrolysis of epoxy resin and PET was beneficial to the formation of pyrolytic char, while the generation of small molecule gaseous products was restrained to a certain degree. The kinetic results revealed that the presence of epoxy resin dramatically reduced the energy barrier for PET decomposition into terephthalic acid (TPA) and vinyl benzoate <em>via</em> a cyclic transition state, finally resulting in an obvious reduction in the activation energy of the pyrolysis reaction. Remarkably, the activation energy for co-pyrolysis sharply decreased to around 150 kJ/mol at a low conversion rate. The co-pyrolysis presented a significant impact on the further transformation of primary pyrolysis products <em>via</em> decarboxylation, deoxygenation, decarbonylation, isomerization, and so on, thus contributing to the selective production of specified chemicals. Furthermore, the plausible reaction pathways and synergistic mechanisms between co-pyrolysis of epoxy resin and PET were discussed thoroughly.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"117 ","pages":"Article 101841"},"PeriodicalIF":5.6000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast co-pyrolysis characteristics of polyethylene terephthalate and epoxy resin from waste wind turbine blades\",\"authors\":\"Yong Yao ,&nbsp;Yang Cao ,&nbsp;Mumin Rao ,&nbsp;Rui Shan ,&nbsp;Jun Zhang\",\"doi\":\"10.1016/j.joei.2024.101841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The present study systematically investigated the fast co-pyrolysis characteristics of epoxy resin and polyethylene terephthalate (PET) derived from waste wind turbine blades, with the aim of uncovering the possible synergistic effect in co-pyrolysis. The co-pyrolysis of epoxy resin and PET was beneficial to the formation of pyrolytic char, while the generation of small molecule gaseous products was restrained to a certain degree. The kinetic results revealed that the presence of epoxy resin dramatically reduced the energy barrier for PET decomposition into terephthalic acid (TPA) and vinyl benzoate <em>via</em> a cyclic transition state, finally resulting in an obvious reduction in the activation energy of the pyrolysis reaction. Remarkably, the activation energy for co-pyrolysis sharply decreased to around 150 kJ/mol at a low conversion rate. The co-pyrolysis presented a significant impact on the further transformation of primary pyrolysis products <em>via</em> decarboxylation, deoxygenation, decarbonylation, isomerization, and so on, thus contributing to the selective production of specified chemicals. Furthermore, the plausible reaction pathways and synergistic mechanisms between co-pyrolysis of epoxy resin and PET were discussed thoroughly.</div></div>\",\"PeriodicalId\":17287,\"journal\":{\"name\":\"Journal of The Energy Institute\",\"volume\":\"117 \",\"pages\":\"Article 101841\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Energy Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1743967124003192\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967124003192","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究系统研究了从废弃风力涡轮机叶片中提取的环氧树脂和聚对苯二甲酸乙二酯(PET)的快速共热解特性,旨在揭示共热解过程中可能存在的协同效应。环氧树脂和聚对苯二甲酸乙二醇酯的共热解有利于热解炭的形成,而小分子气态产物的生成则受到一定程度的抑制。动力学结果表明,环氧树脂的存在大大降低了 PET 通过循环过渡态分解成对苯二甲酸(TPA)和苯甲酸乙烯酯的能障,最终导致热解反应的活化能明显降低。值得注意的是,在低转化率条件下,共热解的活化能急剧下降至 150 kJ/mol 左右。共热解对初级热解产物通过脱羧、脱氧、脱羰基、异构化等进一步转化产生了重大影响,从而有助于选择性地生产特定化学品。此外,还深入讨论了环氧树脂和 PET 共同热解的合理反应途径和协同机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast co-pyrolysis characteristics of polyethylene terephthalate and epoxy resin from waste wind turbine blades
The present study systematically investigated the fast co-pyrolysis characteristics of epoxy resin and polyethylene terephthalate (PET) derived from waste wind turbine blades, with the aim of uncovering the possible synergistic effect in co-pyrolysis. The co-pyrolysis of epoxy resin and PET was beneficial to the formation of pyrolytic char, while the generation of small molecule gaseous products was restrained to a certain degree. The kinetic results revealed that the presence of epoxy resin dramatically reduced the energy barrier for PET decomposition into terephthalic acid (TPA) and vinyl benzoate via a cyclic transition state, finally resulting in an obvious reduction in the activation energy of the pyrolysis reaction. Remarkably, the activation energy for co-pyrolysis sharply decreased to around 150 kJ/mol at a low conversion rate. The co-pyrolysis presented a significant impact on the further transformation of primary pyrolysis products via decarboxylation, deoxygenation, decarbonylation, isomerization, and so on, thus contributing to the selective production of specified chemicals. Furthermore, the plausible reaction pathways and synergistic mechanisms between co-pyrolysis of epoxy resin and PET were discussed thoroughly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Energy Institute
Journal of The Energy Institute 工程技术-能源与燃料
CiteScore
10.60
自引率
5.30%
发文量
166
审稿时长
16 days
期刊介绍: The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include: Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies Emissions and environmental pollution control; safety and hazards; Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS; Petroleum engineering and fuel quality, including storage and transport Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems Energy storage The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.
期刊最新文献
Editorial Board Synergistic recovery of renewable hydrocarbon resources via co-pyrolysis of non-edible linseed and waste polypropylene: A study on influence of plastic on oil production and their utilization as a fuel for IC engine Comprehensive performance investigation of inexpensive oxygen carrier in chemical looping gasification of coal Cerium-induced modification of acid-base sites in Ni-zeolite catalysts for improved dry reforming of methane The impact of ignition and activation energy distribution on the combustion and emission characteristics of diesel-ammonia-natural gas engines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1