Ying-Jun Sun , Jia-Min Zhou , Xin Ma , Ze-Tong Feng , Xin-Tao Liu , Xin-Rui Zhang , Ying Wang , Hong-Hao Niu , Ren-Cun Jin , Qian-Qian Zhang
{"title":"营养条件变化对反硝化联合体性能和演替的影响:机理与特征","authors":"Ying-Jun Sun , Jia-Min Zhou , Xin Ma , Ze-Tong Feng , Xin-Tao Liu , Xin-Rui Zhang , Ying Wang , Hong-Hao Niu , Ren-Cun Jin , Qian-Qian Zhang","doi":"10.1016/j.bej.2024.109503","DOIUrl":null,"url":null,"abstract":"<div><div>In the process of wastewater treatment, biomass was typically subjected to variation of nutrient condition. This study investigated the effects of different nutrient condition on denitrification performance and bacterial communities. The results showed that under carbon-to-nitrogen ratio (C/N) was 4, denitrifying sludge (DS) exhibited excellent denitrification performance with influent nitrate (NO<sub>3</sub><sup>-</sup>-N) concentration in the range of 88.8 ± 9.04–297.5 ± 6.63 mg L<sup>−1</sup>, maintained total nitrogen removal efficiency (TNRE) of 98.1 ± 1.75 %. While, as influent NO<sub>3</sub><sup>-</sup>-N concentration reached 408.9 ± 9.56 mg L<sup>−1</sup>, the denitrification performance was inhibited, and this inhibition was reversible. Under appropriate substrate level (215.0 ± 13.01 mg L<sup>−1</sup>), the specific denitrification activity (SDA) elevated to 300 % of its original value. Additionally, under starvation stress, although the relative abundance of some starvation-resistant bacteria (such as <em>Actinobacteriota</em> and <em>Lentimicrobium</em>) increased, the TNRE decreased by 7.3 %. During the recovery phase, despite extracellular polymeric substances (EPS) promoted, the TNRE decreased to 78.3 ± 4.7 %. Starvation stress was less favorable to DS for activity recovery than that of feast condition. These findings contribute to elucidating the mechanisms for DS to respond of different nutrient condition.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"212 ","pages":"Article 109503"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Response of the performance and succession of denitrification consortium under the variation of nutritional conditions: Mechanisms and characteristics\",\"authors\":\"Ying-Jun Sun , Jia-Min Zhou , Xin Ma , Ze-Tong Feng , Xin-Tao Liu , Xin-Rui Zhang , Ying Wang , Hong-Hao Niu , Ren-Cun Jin , Qian-Qian Zhang\",\"doi\":\"10.1016/j.bej.2024.109503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the process of wastewater treatment, biomass was typically subjected to variation of nutrient condition. This study investigated the effects of different nutrient condition on denitrification performance and bacterial communities. The results showed that under carbon-to-nitrogen ratio (C/N) was 4, denitrifying sludge (DS) exhibited excellent denitrification performance with influent nitrate (NO<sub>3</sub><sup>-</sup>-N) concentration in the range of 88.8 ± 9.04–297.5 ± 6.63 mg L<sup>−1</sup>, maintained total nitrogen removal efficiency (TNRE) of 98.1 ± 1.75 %. While, as influent NO<sub>3</sub><sup>-</sup>-N concentration reached 408.9 ± 9.56 mg L<sup>−1</sup>, the denitrification performance was inhibited, and this inhibition was reversible. Under appropriate substrate level (215.0 ± 13.01 mg L<sup>−1</sup>), the specific denitrification activity (SDA) elevated to 300 % of its original value. Additionally, under starvation stress, although the relative abundance of some starvation-resistant bacteria (such as <em>Actinobacteriota</em> and <em>Lentimicrobium</em>) increased, the TNRE decreased by 7.3 %. During the recovery phase, despite extracellular polymeric substances (EPS) promoted, the TNRE decreased to 78.3 ± 4.7 %. Starvation stress was less favorable to DS for activity recovery than that of feast condition. These findings contribute to elucidating the mechanisms for DS to respond of different nutrient condition.</div></div>\",\"PeriodicalId\":8766,\"journal\":{\"name\":\"Biochemical Engineering Journal\",\"volume\":\"212 \",\"pages\":\"Article 109503\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369703X24002900\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X24002900","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Response of the performance and succession of denitrification consortium under the variation of nutritional conditions: Mechanisms and characteristics
In the process of wastewater treatment, biomass was typically subjected to variation of nutrient condition. This study investigated the effects of different nutrient condition on denitrification performance and bacterial communities. The results showed that under carbon-to-nitrogen ratio (C/N) was 4, denitrifying sludge (DS) exhibited excellent denitrification performance with influent nitrate (NO3--N) concentration in the range of 88.8 ± 9.04–297.5 ± 6.63 mg L−1, maintained total nitrogen removal efficiency (TNRE) of 98.1 ± 1.75 %. While, as influent NO3--N concentration reached 408.9 ± 9.56 mg L−1, the denitrification performance was inhibited, and this inhibition was reversible. Under appropriate substrate level (215.0 ± 13.01 mg L−1), the specific denitrification activity (SDA) elevated to 300 % of its original value. Additionally, under starvation stress, although the relative abundance of some starvation-resistant bacteria (such as Actinobacteriota and Lentimicrobium) increased, the TNRE decreased by 7.3 %. During the recovery phase, despite extracellular polymeric substances (EPS) promoted, the TNRE decreased to 78.3 ± 4.7 %. Starvation stress was less favorable to DS for activity recovery than that of feast condition. These findings contribute to elucidating the mechanisms for DS to respond of different nutrient condition.
期刊介绍:
The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology.
The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields:
Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics
Biosensors and Biodevices including biofabrication and novel fuel cell development
Bioseparations including scale-up and protein refolding/renaturation
Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells
Bioreactor Systems including characterization, optimization and scale-up
Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization
Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals
Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release
Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites
Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation
Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis
Protein Engineering including enzyme engineering and directed evolution.