基于热转印技术的非酶柔性可穿戴传感器,用于连续检测汗液中的葡萄糖

IF 4.9 2区 化学 Q1 CHEMISTRY, ANALYTICAL Microchemical Journal Pub Date : 2024-09-19 DOI:10.1016/j.microc.2024.111690
{"title":"基于热转印技术的非酶柔性可穿戴传感器,用于连续检测汗液中的葡萄糖","authors":"","doi":"10.1016/j.microc.2024.111690","DOIUrl":null,"url":null,"abstract":"<div><div>Non-invasive, flexible wearable sensors are an important method to continuously measure glucose in sweat for diabetes and human health monitoring and management. However, how to create an alkaline environment at any time so that CuO based sensors can be applied to wearable devices to detect sweat glucose while finding a way to efficiently and quickly produce the sensors in small batches have been a challenge. Herein, we report a non-enzymatic thermal transferred flexible and wearable sensor based on CuO/CaTiO<sub>3</sub> for continuous glucose detection in sweat. The sensor is manufactured using thermal transfer printing technology, which offers advantages like low cost, ease of operation, and rapid small batch production. CuO is known for its excellent electrocatalytic activity, making it a suitable candidate for glucose oxidation. Meanwhile, CaTiO<sub>3</sub> particles provide a large specific surface area, good biocompatibility, and electrical conductivity, which enhance the electron transfer rate during detection and broaden the linear range of glucose detection. Specially designed NaOH/Nafion/PEO blend film make the measurements always in a strong alkali environment without any pretreatment and preparation. The synthesized material with this as-prepared flexible and wearable sensor exhibits superior performance towards glucose monitoring, such as high sensitivity of 487.3 μA mM<sup>−1</sup> cm<sup>−2</sup> with limit of detection(LOD) 0.75 μM, wide dynamic linear range from 0.01 mM to 2 mM and fast response time of less than 0.1 s. Additionally, the proposed sensor also exhibited excellent biocompatibility, selectivity, reproducibility and flexibility, as well as good stability with about 88 % of its initial activity after 5 weeks’ storage and it has been successfully applied for the detection of glucose concentration in human sweat real samples. This research contributes to the development of flexible and wearable sensors for non-invasive sweat diagnostics, enabling continuous glucose monitoring for various applications in healthcare and wellness.</div></div>","PeriodicalId":391,"journal":{"name":"Microchemical Journal","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A non-enzymatic flexible and wearable sensor based on thermal transfer printing technology for continuous glucose detection in sweat\",\"authors\":\"\",\"doi\":\"10.1016/j.microc.2024.111690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Non-invasive, flexible wearable sensors are an important method to continuously measure glucose in sweat for diabetes and human health monitoring and management. However, how to create an alkaline environment at any time so that CuO based sensors can be applied to wearable devices to detect sweat glucose while finding a way to efficiently and quickly produce the sensors in small batches have been a challenge. Herein, we report a non-enzymatic thermal transferred flexible and wearable sensor based on CuO/CaTiO<sub>3</sub> for continuous glucose detection in sweat. The sensor is manufactured using thermal transfer printing technology, which offers advantages like low cost, ease of operation, and rapid small batch production. CuO is known for its excellent electrocatalytic activity, making it a suitable candidate for glucose oxidation. Meanwhile, CaTiO<sub>3</sub> particles provide a large specific surface area, good biocompatibility, and electrical conductivity, which enhance the electron transfer rate during detection and broaden the linear range of glucose detection. Specially designed NaOH/Nafion/PEO blend film make the measurements always in a strong alkali environment without any pretreatment and preparation. The synthesized material with this as-prepared flexible and wearable sensor exhibits superior performance towards glucose monitoring, such as high sensitivity of 487.3 μA mM<sup>−1</sup> cm<sup>−2</sup> with limit of detection(LOD) 0.75 μM, wide dynamic linear range from 0.01 mM to 2 mM and fast response time of less than 0.1 s. Additionally, the proposed sensor also exhibited excellent biocompatibility, selectivity, reproducibility and flexibility, as well as good stability with about 88 % of its initial activity after 5 weeks’ storage and it has been successfully applied for the detection of glucose concentration in human sweat real samples. This research contributes to the development of flexible and wearable sensors for non-invasive sweat diagnostics, enabling continuous glucose monitoring for various applications in healthcare and wellness.</div></div>\",\"PeriodicalId\":391,\"journal\":{\"name\":\"Microchemical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microchemical Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0026265X24018022\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchemical Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026265X24018022","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

无创、灵活的可穿戴传感器是持续测量汗液中葡萄糖的重要方法,可用于糖尿病和人体健康监测与管理。然而,如何随时创造碱性环境,以便将基于氧化铜的传感器应用到可穿戴设备中检测汗液葡萄糖,同时找到高效、快速地小批量生产传感器的方法,一直是一个难题。在此,我们报告了一种基于 CuO/CaTiO3 的非酶热转印柔性可穿戴传感器,用于连续检测汗液中的葡萄糖。该传感器采用热转印印刷技术制造,具有成本低、操作简便和小批量快速生产等优点。众所周知,CuO 具有出色的电催化活性,因此适合用于葡萄糖氧化。同时,CaTiO3 颗粒具有较大的比表面积、良好的生物相容性和导电性,可提高检测过程中的电子转移率,扩大葡萄糖检测的线性范围。特殊设计的 NaOH/Nafion/PEO 混合膜使测量始终在强碱环境中进行,无需任何预处理和准备。合成的这种柔性可穿戴传感器材料在葡萄糖监测方面表现出卓越的性能,例如灵敏度高达 487.3 μA mM-1 cm-2,检测限(LOD)为 0.75 μM,动态线性范围从 0.01 mM 到 2 mM,响应时间小于 0.1 秒。此外,所提出的传感器还具有良好的生物相容性、选择性、再现性和灵活性,以及储存 5 周后约 88% 的初始活性的良好稳定性,并已成功应用于人体汗液真实样本中葡萄糖浓度的检测。这项研究有助于开发用于无创汗液诊断的柔性可穿戴传感器,从而为医疗保健和健康领域的各种应用提供连续葡萄糖监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A non-enzymatic flexible and wearable sensor based on thermal transfer printing technology for continuous glucose detection in sweat
Non-invasive, flexible wearable sensors are an important method to continuously measure glucose in sweat for diabetes and human health monitoring and management. However, how to create an alkaline environment at any time so that CuO based sensors can be applied to wearable devices to detect sweat glucose while finding a way to efficiently and quickly produce the sensors in small batches have been a challenge. Herein, we report a non-enzymatic thermal transferred flexible and wearable sensor based on CuO/CaTiO3 for continuous glucose detection in sweat. The sensor is manufactured using thermal transfer printing technology, which offers advantages like low cost, ease of operation, and rapid small batch production. CuO is known for its excellent electrocatalytic activity, making it a suitable candidate for glucose oxidation. Meanwhile, CaTiO3 particles provide a large specific surface area, good biocompatibility, and electrical conductivity, which enhance the electron transfer rate during detection and broaden the linear range of glucose detection. Specially designed NaOH/Nafion/PEO blend film make the measurements always in a strong alkali environment without any pretreatment and preparation. The synthesized material with this as-prepared flexible and wearable sensor exhibits superior performance towards glucose monitoring, such as high sensitivity of 487.3 μA mM−1 cm−2 with limit of detection(LOD) 0.75 μM, wide dynamic linear range from 0.01 mM to 2 mM and fast response time of less than 0.1 s. Additionally, the proposed sensor also exhibited excellent biocompatibility, selectivity, reproducibility and flexibility, as well as good stability with about 88 % of its initial activity after 5 weeks’ storage and it has been successfully applied for the detection of glucose concentration in human sweat real samples. This research contributes to the development of flexible and wearable sensors for non-invasive sweat diagnostics, enabling continuous glucose monitoring for various applications in healthcare and wellness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microchemical Journal
Microchemical Journal 化学-分析化学
CiteScore
8.70
自引率
8.30%
发文量
1131
审稿时长
1.9 months
期刊介绍: The Microchemical Journal is a peer reviewed journal devoted to all aspects and phases of analytical chemistry and chemical analysis. The Microchemical Journal publishes articles which are at the forefront of modern analytical chemistry and cover innovations in the techniques to the finest possible limits. This includes fundamental aspects, instrumentation, new developments, innovative and novel methods and applications including environmental and clinical field. Traditional classical analytical methods such as spectrophotometry and titrimetry as well as established instrumentation methods such as flame and graphite furnace atomic absorption spectrometry, gas chromatography, and modified glassy or carbon electrode electrochemical methods will be considered, provided they show significant improvements and novelty compared to the established methods.
期刊最新文献
Comprehensive review of sample preparation strategies for phthalate ester analysis in various real samples Frontiers of nanozymes: Enhancing cancer diagnosis and therapeutic strategies Implementation of the metal organic frameworks on paper-based devices: A review on current applications and future sights Recent electrochemical applications of Two-Dimensional nanoclays based materials Surface functionalized gold nanoclusters based on optical biosensors for detecting pesticide residues in agricultural foods: A critical review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1