Luca Basilone , Simone Bernardini , Fausto Grassa , Attilio Sulli , Luis M. Nieto , Anas Abbassi , Luigi Jovane
{"title":"泰特洋碳酸盐平台消亡期间的古氧化还原条件:磷化和富含金属(锰和铁)的硬地提供的证据","authors":"Luca Basilone , Simone Bernardini , Fausto Grassa , Attilio Sulli , Luis M. Nieto , Anas Abbassi , Luigi Jovane","doi":"10.1016/j.marpetgeo.2024.107121","DOIUrl":null,"url":null,"abstract":"<div><div>Phosphatized Mn and Fe rich hardgrounds and condensed pelagic deposits in carbonate platform successions are precious archives of abrupt climate and environmental changes (redox conditions and phosphorous availability) in the past shallow-water marine environment. While numerous examples have been documented in the Cretaceous successions of the Northern Tethys, the scarcity of similar descriptions from the southern margins suggests differences in sedimentary processes or preservation conditions.</div><div>In this work we study three phosphatized Mn and Fe rich hardgrounds and pelagic condensed deposits that mark the repetitive demise of the Panormide carbonate platform developed in the Southern Tethyan margin during the Cretaceous. The integration of SEM-EDS, PXRD, and Micro-Raman spectroscopy data shows that these hardgrounds consist of fine-grained Fe (goethite and hematite) and Mn (birnessite and/or vernadite) oxides dispersed in a calcite and apatite matrix. Micro-Raman spectroscopy shows the presence of oxidized Mn species: Mn<sup>3+</sup> and Mn<sup>4+</sup>. The oxidation of Mn<sup>2+</sup> → Mn<sup>3+/4+</sup> and/or Fe<sup>2+</sup> → Fe<sup>3+</sup> occurred at the sediment-seawater interface under oxic conditions (where both Mn and Fe oxidize) or suboxic conditions (where only Fe oxidizes). The paleoenvironmental perturbations that triggered the formation of both hardgrounds and condensed pelagic deposits were likely related to pCO<sub>2</sub> cycle, upwelling of P-Mn-Fe-rich water masses, eutrophication and phosphatization related to the Cretaceous climate oscillations during the main Oceanic Anoxic Events. These perturbations were likely enhanced by tectonic activity. Moreover, we show that the formation of the phosphatized metals-rich hardgrounds and the recovery of shallow-water sedimentation occurred after long-term periods (6–12 Ma). Thus, the Panormide serves as a remarkable example of resilience amidst significant climatic changes.</div></div>","PeriodicalId":18189,"journal":{"name":"Marine and Petroleum Geology","volume":"170 ","pages":"Article 107121"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Paleo-redox conditions during the demise of a carbonate platform in the Tethyan ocean: Evidence from phosphatized and metals (Mn and Fe) rich hardgrounds\",\"authors\":\"Luca Basilone , Simone Bernardini , Fausto Grassa , Attilio Sulli , Luis M. Nieto , Anas Abbassi , Luigi Jovane\",\"doi\":\"10.1016/j.marpetgeo.2024.107121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Phosphatized Mn and Fe rich hardgrounds and condensed pelagic deposits in carbonate platform successions are precious archives of abrupt climate and environmental changes (redox conditions and phosphorous availability) in the past shallow-water marine environment. While numerous examples have been documented in the Cretaceous successions of the Northern Tethys, the scarcity of similar descriptions from the southern margins suggests differences in sedimentary processes or preservation conditions.</div><div>In this work we study three phosphatized Mn and Fe rich hardgrounds and pelagic condensed deposits that mark the repetitive demise of the Panormide carbonate platform developed in the Southern Tethyan margin during the Cretaceous. The integration of SEM-EDS, PXRD, and Micro-Raman spectroscopy data shows that these hardgrounds consist of fine-grained Fe (goethite and hematite) and Mn (birnessite and/or vernadite) oxides dispersed in a calcite and apatite matrix. Micro-Raman spectroscopy shows the presence of oxidized Mn species: Mn<sup>3+</sup> and Mn<sup>4+</sup>. The oxidation of Mn<sup>2+</sup> → Mn<sup>3+/4+</sup> and/or Fe<sup>2+</sup> → Fe<sup>3+</sup> occurred at the sediment-seawater interface under oxic conditions (where both Mn and Fe oxidize) or suboxic conditions (where only Fe oxidizes). The paleoenvironmental perturbations that triggered the formation of both hardgrounds and condensed pelagic deposits were likely related to pCO<sub>2</sub> cycle, upwelling of P-Mn-Fe-rich water masses, eutrophication and phosphatization related to the Cretaceous climate oscillations during the main Oceanic Anoxic Events. These perturbations were likely enhanced by tectonic activity. Moreover, we show that the formation of the phosphatized metals-rich hardgrounds and the recovery of shallow-water sedimentation occurred after long-term periods (6–12 Ma). Thus, the Panormide serves as a remarkable example of resilience amidst significant climatic changes.</div></div>\",\"PeriodicalId\":18189,\"journal\":{\"name\":\"Marine and Petroleum Geology\",\"volume\":\"170 \",\"pages\":\"Article 107121\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine and Petroleum Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0264817224004331\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine and Petroleum Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264817224004331","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Paleo-redox conditions during the demise of a carbonate platform in the Tethyan ocean: Evidence from phosphatized and metals (Mn and Fe) rich hardgrounds
Phosphatized Mn and Fe rich hardgrounds and condensed pelagic deposits in carbonate platform successions are precious archives of abrupt climate and environmental changes (redox conditions and phosphorous availability) in the past shallow-water marine environment. While numerous examples have been documented in the Cretaceous successions of the Northern Tethys, the scarcity of similar descriptions from the southern margins suggests differences in sedimentary processes or preservation conditions.
In this work we study three phosphatized Mn and Fe rich hardgrounds and pelagic condensed deposits that mark the repetitive demise of the Panormide carbonate platform developed in the Southern Tethyan margin during the Cretaceous. The integration of SEM-EDS, PXRD, and Micro-Raman spectroscopy data shows that these hardgrounds consist of fine-grained Fe (goethite and hematite) and Mn (birnessite and/or vernadite) oxides dispersed in a calcite and apatite matrix. Micro-Raman spectroscopy shows the presence of oxidized Mn species: Mn3+ and Mn4+. The oxidation of Mn2+ → Mn3+/4+ and/or Fe2+ → Fe3+ occurred at the sediment-seawater interface under oxic conditions (where both Mn and Fe oxidize) or suboxic conditions (where only Fe oxidizes). The paleoenvironmental perturbations that triggered the formation of both hardgrounds and condensed pelagic deposits were likely related to pCO2 cycle, upwelling of P-Mn-Fe-rich water masses, eutrophication and phosphatization related to the Cretaceous climate oscillations during the main Oceanic Anoxic Events. These perturbations were likely enhanced by tectonic activity. Moreover, we show that the formation of the phosphatized metals-rich hardgrounds and the recovery of shallow-water sedimentation occurred after long-term periods (6–12 Ma). Thus, the Panormide serves as a remarkable example of resilience amidst significant climatic changes.
期刊介绍:
Marine and Petroleum Geology is the pre-eminent international forum for the exchange of multidisciplinary concepts, interpretations and techniques for all concerned with marine and petroleum geology in industry, government and academia. Rapid bimonthly publication allows early communications of papers or short communications to the geoscience community.
Marine and Petroleum Geology is essential reading for geologists, geophysicists and explorationists in industry, government and academia working in the following areas: marine geology; basin analysis and evaluation; organic geochemistry; reserve/resource estimation; seismic stratigraphy; thermal models of basic evolution; sedimentary geology; continental margins; geophysical interpretation; structural geology/tectonics; formation evaluation techniques; well logging.