Duanhao Wang , Yanling Feng , Jun Li , Yifan Feng , Chunlei Yang , Yechao Tian , Yang Pan , Xun Chen , Quanxing Zhang , Aimin Li
{"title":"利用零价铁强化水解酸化,高效处理工业园区的综合废水:机理认识与毒性降低","authors":"Duanhao Wang , Yanling Feng , Jun Li , Yifan Feng , Chunlei Yang , Yechao Tian , Yang Pan , Xun Chen , Quanxing Zhang , Aimin Li","doi":"10.1016/j.jece.2024.114212","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a laboratory-scale zero-valent iron (ZVI)-enhanced hydrolytic acidification system was established to treat the comprehensive wastewater from Nanjing Jiangbei New Material Science Technology Park. Results indicated that the ZVI-enhanced hydrolytic acidification system achieved a maximum COD removal efficiency of 95.0 %, surpassing the performance of the system without ZVI by 12.2 %. Microbial community analysis revealed the enrichment of electrogenic bacterium <em>Bacteroidetes_vadinHA17</em> and typical hydrogenotrophic methanogen <em>Methanobacterium</em> due to ZVI addition. High-throughput sequencing combined with PICRUSt2 analysis demonstrated acetate production was promoted, and butyrate and propionate production was inhibited. Additionally, Oxygen Uptake Rate-based toxicity assays revealed the hydrolytic acidification system transitioned the wastewater of three enterprises from low toxicity to non-toxic status and two from high to low toxicity. While the ZVI-enhanced hydrolytic acidification system successfully reduced the toxicity of all highly and low toxic wastewaters to non-toxic levels.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114212"},"PeriodicalIF":7.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced hydrolytic acidification with Zero-Valent Iron for efficient treatment of comprehensive wastewater from industrial parks: Mechanistic insights and toxicity reduction\",\"authors\":\"Duanhao Wang , Yanling Feng , Jun Li , Yifan Feng , Chunlei Yang , Yechao Tian , Yang Pan , Xun Chen , Quanxing Zhang , Aimin Li\",\"doi\":\"10.1016/j.jece.2024.114212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, a laboratory-scale zero-valent iron (ZVI)-enhanced hydrolytic acidification system was established to treat the comprehensive wastewater from Nanjing Jiangbei New Material Science Technology Park. Results indicated that the ZVI-enhanced hydrolytic acidification system achieved a maximum COD removal efficiency of 95.0 %, surpassing the performance of the system without ZVI by 12.2 %. Microbial community analysis revealed the enrichment of electrogenic bacterium <em>Bacteroidetes_vadinHA17</em> and typical hydrogenotrophic methanogen <em>Methanobacterium</em> due to ZVI addition. High-throughput sequencing combined with PICRUSt2 analysis demonstrated acetate production was promoted, and butyrate and propionate production was inhibited. Additionally, Oxygen Uptake Rate-based toxicity assays revealed the hydrolytic acidification system transitioned the wastewater of three enterprises from low toxicity to non-toxic status and two from high to low toxicity. While the ZVI-enhanced hydrolytic acidification system successfully reduced the toxicity of all highly and low toxic wastewaters to non-toxic levels.</div></div>\",\"PeriodicalId\":15759,\"journal\":{\"name\":\"Journal of Environmental Chemical Engineering\",\"volume\":\"12 6\",\"pages\":\"Article 114212\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213343724023431\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213343724023431","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Enhanced hydrolytic acidification with Zero-Valent Iron for efficient treatment of comprehensive wastewater from industrial parks: Mechanistic insights and toxicity reduction
In this study, a laboratory-scale zero-valent iron (ZVI)-enhanced hydrolytic acidification system was established to treat the comprehensive wastewater from Nanjing Jiangbei New Material Science Technology Park. Results indicated that the ZVI-enhanced hydrolytic acidification system achieved a maximum COD removal efficiency of 95.0 %, surpassing the performance of the system without ZVI by 12.2 %. Microbial community analysis revealed the enrichment of electrogenic bacterium Bacteroidetes_vadinHA17 and typical hydrogenotrophic methanogen Methanobacterium due to ZVI addition. High-throughput sequencing combined with PICRUSt2 analysis demonstrated acetate production was promoted, and butyrate and propionate production was inhibited. Additionally, Oxygen Uptake Rate-based toxicity assays revealed the hydrolytic acidification system transitioned the wastewater of three enterprises from low toxicity to non-toxic status and two from high to low toxicity. While the ZVI-enhanced hydrolytic acidification system successfully reduced the toxicity of all highly and low toxic wastewaters to non-toxic levels.
期刊介绍:
The Journal of Environmental Chemical Engineering (JECE) serves as a platform for the dissemination of original and innovative research focusing on the advancement of environmentally-friendly, sustainable technologies. JECE emphasizes the transition towards a carbon-neutral circular economy and a self-sufficient bio-based economy. Topics covered include soil, water, wastewater, and air decontamination; pollution monitoring, prevention, and control; advanced analytics, sensors, impact and risk assessment methodologies in environmental chemical engineering; resource recovery (water, nutrients, materials, energy); industrial ecology; valorization of waste streams; waste management (including e-waste); climate-water-energy-food nexus; novel materials for environmental, chemical, and energy applications; sustainability and environmental safety; water digitalization, water data science, and machine learning; process integration and intensification; recent developments in green chemistry for synthesis, catalysis, and energy; and original research on contaminants of emerging concern, persistent chemicals, and priority substances, including microplastics, nanoplastics, nanomaterials, micropollutants, antimicrobial resistance genes, and emerging pathogens (viruses, bacteria, parasites) of environmental significance.