基于混合模型的 GIL 电磁-热-流体多物理场耦合快速计算

IF 3.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Electric Power Systems Research Pub Date : 2024-09-21 DOI:10.1016/j.epsr.2024.111074
{"title":"基于混合模型的 GIL 电磁-热-流体多物理场耦合快速计算","authors":"","doi":"10.1016/j.epsr.2024.111074","DOIUrl":null,"url":null,"abstract":"<div><div>To ensure the reliability and stability of gas-insulated transmission lines(GIL) operation, it is crucial to accurately calculate the temperature distribution. This paper proposes a fast calculation method for GIL electromagnetic-thermal-fluid multiphysics coupling based on hybrid mesh and hybrid dimension (HMHD), including degree of freedom constraints that considering operational and structural characteristics.The proposed method couples a 3D electromagnetic field with a 2D temperature field, maintaining 3D model accuracy while having faster computational speed. Compared with traditional methods, the HMHD has further merits in mesh generation, degree of freedom reduction, and lower computational cost. At same time, it simplifies programming and facilitates the handling of boundary conditions. Both numerical simulations and experimental data demonstrate the feasibility and accuracy of the HMHD method. This study introduces a novel approach for the multiphysics coupling calculation of GIL, with a particular emphasis on its advantages in large-scale computations.</div></div>","PeriodicalId":50547,"journal":{"name":"Electric Power Systems Research","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378779624009593/pdfft?md5=725d98422c4878667c5b2fe65657ae7b&pid=1-s2.0-S0378779624009593-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Fast calculation of electromagnetic-thermal-fulid multiphysics coupling of GIL based on hybrid model\",\"authors\":\"\",\"doi\":\"10.1016/j.epsr.2024.111074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To ensure the reliability and stability of gas-insulated transmission lines(GIL) operation, it is crucial to accurately calculate the temperature distribution. This paper proposes a fast calculation method for GIL electromagnetic-thermal-fluid multiphysics coupling based on hybrid mesh and hybrid dimension (HMHD), including degree of freedom constraints that considering operational and structural characteristics.The proposed method couples a 3D electromagnetic field with a 2D temperature field, maintaining 3D model accuracy while having faster computational speed. Compared with traditional methods, the HMHD has further merits in mesh generation, degree of freedom reduction, and lower computational cost. At same time, it simplifies programming and facilitates the handling of boundary conditions. Both numerical simulations and experimental data demonstrate the feasibility and accuracy of the HMHD method. This study introduces a novel approach for the multiphysics coupling calculation of GIL, with a particular emphasis on its advantages in large-scale computations.</div></div>\",\"PeriodicalId\":50547,\"journal\":{\"name\":\"Electric Power Systems Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0378779624009593/pdfft?md5=725d98422c4878667c5b2fe65657ae7b&pid=1-s2.0-S0378779624009593-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electric Power Systems Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378779624009593\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electric Power Systems Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378779624009593","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

为确保气体绝缘输电线路(GIL)运行的可靠性和稳定性,精确计算温度分布至关重要。本文提出了一种基于混合网格和混合维数(HMHD)的 GIL 电磁-热-流体多物理场耦合快速计算方法,包括考虑运行和结构特性的自由度约束。与传统方法相比,HMHD 在网格生成、减少自由度和降低计算成本方面有更多优势。同时,它还简化了编程,方便了边界条件的处理。数值模拟和实验数据都证明了 HMHD 方法的可行性和准确性。本研究介绍了一种用于 GIL 多物理场耦合计算的新方法,特别强调了该方法在大规模计算中的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast calculation of electromagnetic-thermal-fulid multiphysics coupling of GIL based on hybrid model
To ensure the reliability and stability of gas-insulated transmission lines(GIL) operation, it is crucial to accurately calculate the temperature distribution. This paper proposes a fast calculation method for GIL electromagnetic-thermal-fluid multiphysics coupling based on hybrid mesh and hybrid dimension (HMHD), including degree of freedom constraints that considering operational and structural characteristics.The proposed method couples a 3D electromagnetic field with a 2D temperature field, maintaining 3D model accuracy while having faster computational speed. Compared with traditional methods, the HMHD has further merits in mesh generation, degree of freedom reduction, and lower computational cost. At same time, it simplifies programming and facilitates the handling of boundary conditions. Both numerical simulations and experimental data demonstrate the feasibility and accuracy of the HMHD method. This study introduces a novel approach for the multiphysics coupling calculation of GIL, with a particular emphasis on its advantages in large-scale computations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electric Power Systems Research
Electric Power Systems Research 工程技术-工程:电子与电气
CiteScore
7.50
自引率
17.90%
发文量
963
审稿时长
3.8 months
期刊介绍: Electric Power Systems Research is an international medium for the publication of original papers concerned with the generation, transmission, distribution and utilization of electrical energy. The journal aims at presenting important results of work in this field, whether in the form of applied research, development of new procedures or components, orginal application of existing knowledge or new designapproaches. The scope of Electric Power Systems Research is broad, encompassing all aspects of electric power systems. The following list of topics is not intended to be exhaustive, but rather to indicate topics that fall within the journal purview. • Generation techniques ranging from advances in conventional electromechanical methods, through nuclear power generation, to renewable energy generation. • Transmission, spanning the broad area from UHV (ac and dc) to network operation and protection, line routing and design. • Substation work: equipment design, protection and control systems. • Distribution techniques, equipment development, and smart grids. • The utilization area from energy efficiency to distributed load levelling techniques. • Systems studies including control techniques, planning, optimization methods, stability, security assessment and insulation coordination.
期刊最新文献
Forecasting data-driven system strength level for inverter-based resources-integrated weak grid systems using multi-objective machine learning algorithms Topology design of variable speed drive systems for enhancing power quality in industrial grids Short-term load forecasting by GRU neural network and DDPG algorithm for adaptive optimization of hyperparameters Physics-informed machine learning for forecasting power exchanges at the interface between transmission and distribution systems A dynamic pricing strategy and charging coordination of PEV in a renewable-grid integrated charging station
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1