评估除臭剂蒸馏物衍生银纳米粒子的抗氧化、抗菌和抗炎活性

Hadia Shoaib , Sarfaraz Ahmed Mahesar , Syed Tufail Hussain Sherazi , Saba Naz , Hamide Filiz Ayyildiz , Sirajuddin , Hina Daud Memon , Ahmed Raza Sidhu
{"title":"评估除臭剂蒸馏物衍生银纳米粒子的抗氧化、抗菌和抗炎活性","authors":"Hadia Shoaib ,&nbsp;Sarfaraz Ahmed Mahesar ,&nbsp;Syed Tufail Hussain Sherazi ,&nbsp;Saba Naz ,&nbsp;Hamide Filiz Ayyildiz ,&nbsp;Sirajuddin ,&nbsp;Hina Daud Memon ,&nbsp;Ahmed Raza Sidhu","doi":"10.1016/j.sajce.2024.09.002","DOIUrl":null,"url":null,"abstract":"<div><div>Silver nanoparticles (AgNPs) were synthesized using a sustainable green approach utilizing deodorizer distillates of canola (CODD) and soybean oil (SODD) as both reducing and capping agents. This synthesis approach resulted in the formation of pale-yellow colored CODD-AgNPs and SODD-AgNPs, which was confirmed by distinctive absorption peaks at 420 nm and 408 nm, respectively via Ultraviolet-Visible (UV–Vis) spectroscopy. Fourier Transform Infrared (FTIR) analysis provided insights into the functional group interactions between CODD and SODD with their AgNPs. X-ray diffraction (XRD) confirmed the face-centered cubic lattice structure of both CODD-AgNPs and SODD-AgNPs. Further characterization via Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM), and Scanning Electron Microscopy (SEM) revealed the sizes, shapes, and surface morphologies of CODD-AgNPs and SODD-AgNPs. Assessment of antioxidant activity using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) method demonstrated superior radical scavenging efficacy by CODD-AgNPs (IC<sub>50</sub> value 1.07±0.04 µg/mL) and SODD-AgNPs (IC<sub>50</sub> value 1.14±0.23 µg/mL) compared to CODD and SODD. Evaluation of antibacterial properties against <em>Escherichia coli (E. coli)</em> and <em>Staphylococcus aureus (S. aureus)</em> via disc diffusion method revealed potent antibacterial activities of CODD-AgNPs and SODD-AgNPs at 100 µg/mL concentration, surpassing the antibacterial efficacy of CODD and SODD. Furthermore, CODD-AgNPs and SODD-AgNPs exhibited significant anti-inflammatory potential at 500 µg/mL concentration, with IC<sub>50</sub> values of 187.2 ± 1.28 µg/mL and 203.9 ± 2.08 µg/mL, respectively, highlighting their potential therapeutic applications. In conclusion, this study demonstrates the effective utilization of CODD and SODD in synthesizing AgNPs with enhanced biological functionalities, making them promising candidates for various biomedical applications.</div></div>","PeriodicalId":21926,"journal":{"name":"South African Journal of Chemical Engineering","volume":"50 ","pages":"Pages 311-320"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1026918524001045/pdfft?md5=ca1183fbc549041d0d0b5fd74218f3dd&pid=1-s2.0-S1026918524001045-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Evaluation of antioxidant, antibacterial, and anti-inflammatory activities of deodorizer distillate-derived silver nanoparticles\",\"authors\":\"Hadia Shoaib ,&nbsp;Sarfaraz Ahmed Mahesar ,&nbsp;Syed Tufail Hussain Sherazi ,&nbsp;Saba Naz ,&nbsp;Hamide Filiz Ayyildiz ,&nbsp;Sirajuddin ,&nbsp;Hina Daud Memon ,&nbsp;Ahmed Raza Sidhu\",\"doi\":\"10.1016/j.sajce.2024.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Silver nanoparticles (AgNPs) were synthesized using a sustainable green approach utilizing deodorizer distillates of canola (CODD) and soybean oil (SODD) as both reducing and capping agents. This synthesis approach resulted in the formation of pale-yellow colored CODD-AgNPs and SODD-AgNPs, which was confirmed by distinctive absorption peaks at 420 nm and 408 nm, respectively via Ultraviolet-Visible (UV–Vis) spectroscopy. Fourier Transform Infrared (FTIR) analysis provided insights into the functional group interactions between CODD and SODD with their AgNPs. X-ray diffraction (XRD) confirmed the face-centered cubic lattice structure of both CODD-AgNPs and SODD-AgNPs. Further characterization via Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM), and Scanning Electron Microscopy (SEM) revealed the sizes, shapes, and surface morphologies of CODD-AgNPs and SODD-AgNPs. Assessment of antioxidant activity using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) method demonstrated superior radical scavenging efficacy by CODD-AgNPs (IC<sub>50</sub> value 1.07±0.04 µg/mL) and SODD-AgNPs (IC<sub>50</sub> value 1.14±0.23 µg/mL) compared to CODD and SODD. Evaluation of antibacterial properties against <em>Escherichia coli (E. coli)</em> and <em>Staphylococcus aureus (S. aureus)</em> via disc diffusion method revealed potent antibacterial activities of CODD-AgNPs and SODD-AgNPs at 100 µg/mL concentration, surpassing the antibacterial efficacy of CODD and SODD. Furthermore, CODD-AgNPs and SODD-AgNPs exhibited significant anti-inflammatory potential at 500 µg/mL concentration, with IC<sub>50</sub> values of 187.2 ± 1.28 µg/mL and 203.9 ± 2.08 µg/mL, respectively, highlighting their potential therapeutic applications. In conclusion, this study demonstrates the effective utilization of CODD and SODD in synthesizing AgNPs with enhanced biological functionalities, making them promising candidates for various biomedical applications.</div></div>\",\"PeriodicalId\":21926,\"journal\":{\"name\":\"South African Journal of Chemical Engineering\",\"volume\":\"50 \",\"pages\":\"Pages 311-320\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1026918524001045/pdfft?md5=ca1183fbc549041d0d0b5fd74218f3dd&pid=1-s2.0-S1026918524001045-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"South African Journal of Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1026918524001045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1026918524001045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用可持续的绿色方法,利用菜籽油(CODD)和大豆油(SODD)的脱臭蒸馏物作为还原剂和封端剂,合成了银纳米粒子(AgNPs)。通过紫外-可见(UV-Vis)光谱,在 420 纳米和 408 纳米处分别出现了明显的吸收峰,证实了这种合成方法可形成淡黄色的 CODD-AgNPs 和 SODD-AgNPs。傅立叶变换红外(FTIR)分析深入揭示了 CODD 和 SODD 与其 AgNPs 之间的官能团相互作用。X 射线衍射 (XRD) 证实了 CODD-AgNPs 和 SODD-AgNPs 的面心立方晶格结构。通过原子力显微镜(AFM)、透射电子显微镜(TEM)和扫描电子显微镜(SEM)进行的进一步表征揭示了 CODD-AgNPs 和 SODD-AgNPs 的尺寸、形状和表面形态。使用 1,1-二苯基-2-苦基肼(DPPH)法评估抗氧化活性表明,与 CODD 和 SODD 相比,CDD-AgNPs(IC50 值为 1.07±0.04 µg/mL)和 SODD-AgNPs(IC50 值为 1.14±0.23 µg/mL)具有更高的自由基清除功效。通过碟片扩散法评估 CODD-AgNPs 和 SODD-AgNPs 对大肠杆菌(E. coli)和金黄色葡萄球菌(S. aureus)的抗菌特性发现,在 100 µg/mL 浓度下,CODD-AgNPs 和 SODD-AgNPs 具有很强的抗菌活性,超过了 CODD 和 SODD 的抗菌效力。此外,CODD-AgNPs 和 SODD-AgNPs 在 500 µg/mL 浓度下表现出显著的抗炎潜力,IC50 值分别为 187.2 ± 1.28 µg/mL 和 203.9 ± 2.08 µg/mL,突显了其潜在的治疗应用。总之,本研究证明了 CODD 和 SODD 在合成具有增强生物功能的 AgNPs 中的有效利用,使其成为各种生物医学应用的理想候选物质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of antioxidant, antibacterial, and anti-inflammatory activities of deodorizer distillate-derived silver nanoparticles
Silver nanoparticles (AgNPs) were synthesized using a sustainable green approach utilizing deodorizer distillates of canola (CODD) and soybean oil (SODD) as both reducing and capping agents. This synthesis approach resulted in the formation of pale-yellow colored CODD-AgNPs and SODD-AgNPs, which was confirmed by distinctive absorption peaks at 420 nm and 408 nm, respectively via Ultraviolet-Visible (UV–Vis) spectroscopy. Fourier Transform Infrared (FTIR) analysis provided insights into the functional group interactions between CODD and SODD with their AgNPs. X-ray diffraction (XRD) confirmed the face-centered cubic lattice structure of both CODD-AgNPs and SODD-AgNPs. Further characterization via Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM), and Scanning Electron Microscopy (SEM) revealed the sizes, shapes, and surface morphologies of CODD-AgNPs and SODD-AgNPs. Assessment of antioxidant activity using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) method demonstrated superior radical scavenging efficacy by CODD-AgNPs (IC50 value 1.07±0.04 µg/mL) and SODD-AgNPs (IC50 value 1.14±0.23 µg/mL) compared to CODD and SODD. Evaluation of antibacterial properties against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) via disc diffusion method revealed potent antibacterial activities of CODD-AgNPs and SODD-AgNPs at 100 µg/mL concentration, surpassing the antibacterial efficacy of CODD and SODD. Furthermore, CODD-AgNPs and SODD-AgNPs exhibited significant anti-inflammatory potential at 500 µg/mL concentration, with IC50 values of 187.2 ± 1.28 µg/mL and 203.9 ± 2.08 µg/mL, respectively, highlighting their potential therapeutic applications. In conclusion, this study demonstrates the effective utilization of CODD and SODD in synthesizing AgNPs with enhanced biological functionalities, making them promising candidates for various biomedical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
0.00%
发文量
100
审稿时长
33 weeks
期刊介绍: The journal has a particular interest in publishing papers on the unique issues facing chemical engineering taking place in countries that are rich in resources but face specific technical and societal challenges, which require detailed knowledge of local conditions to address. Core topic areas are: Environmental process engineering • treatment and handling of waste and pollutants • the abatement of pollution, environmental process control • cleaner technologies • waste minimization • environmental chemical engineering • water treatment Reaction Engineering • modelling and simulation of reactors • transport phenomena within reacting systems • fluidization technology • reactor design Separation technologies • classic separations • novel separations Process and materials synthesis • novel synthesis of materials or processes, including but not limited to nanotechnology, ceramics, etc. Metallurgical process engineering and coal technology • novel developments related to the minerals beneficiation industry • coal technology Chemical engineering education • guides to good practice • novel approaches to learning • education beyond university.
期刊最新文献
Effect of ethanol concentration on the catalytic performance of WO3/MCF-Si and WO3/SBA-15 catalysts toward ethanol dehydration to ethylene Parameter influences of FTO/ZnO/Cu₂O photodetectors fabricated by electrodeposition and spray pyrolysis techniques Predicting ash content and water content in coal using full infrared spectra and machine learning models A green route of antibacterial films production from shrimp (Penaeus monodon) shell waste biomass derived chitosan: Physicochemical, thermomechanical, morphological and antimicrobial activity analysis Synthesis of Mannich N-bases based on benzimidazole derivatives using SiO2OAlCl2 catalyst and their potential as antioxidant, antibacterial, and anticancer agents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1