Xia Hua , David B. Kemp , Jun Shen , Runsheng Yin , Xin Jin , Chunju Huang
{"title":"作为古火山活动替代物的汞富集:沉积偏差和对整个三叠纪末的批判性分析","authors":"Xia Hua , David B. Kemp , Jun Shen , Runsheng Yin , Xin Jin , Chunju Huang","doi":"10.1016/j.gloplacha.2024.104589","DOIUrl":null,"url":null,"abstract":"<div><div>Mercury (Hg) anomalies in sedimentary rocks have been increasingly used in paleoclimatology studies for tracing volcanic signals, as Hg emissions from volcanic activity can cause contemporaneous sedimentary Hg enrichment. However, non-volcanic sedimentary controls on Hg have clear potential to mask these signals. These factors include host phase variability linked to environmentally controlled sourcing and settling changes, and/or variable preservation conditions associated with weathering, oxidation and diagenesis. Such factors can limit the efficacy of Hg as a paleo-volcanism proxy. In this study, sedimentary effects on Hg concentration within a complex depositional system in southwest England (St. Audrie's Bay) across the end-Triassic have been analyzed, together with published data from coeval end-Triassic sections globally – an interval of time coeval with the Central Atlantic Magmatic Province (CAMP). Our statistical analysis of Hg and associated geochemical data highlights significant fluctuations in sedimentary Hg due to relative supply differences in Hg and host phases, as well as the changing types and preservation conditions of host phases. End-Triassic sections globally show a consistent undersupply of Hg relative to organic matter across the end-Triassic mass extinction (ETME). To better assess the magnitude and significance of possible Hg enrichments in sedimentary rocks, we present a statistical method for quantifying Hg anomalies to robustly distinguish Hg variations linked to host phase/depositional changes from paleo-volcanism. Our method supports the existence of transient but asynchronous Hg anomalies linked to volcanism from the CAMP across the end-Triassic in most global sections, albeit not in the St. Audrie's Bay section.</div></div>","PeriodicalId":55089,"journal":{"name":"Global and Planetary Change","volume":"242 ","pages":"Article 104589"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mercury enrichments as a paleo-volcanism proxy: Sedimentary bias and a critical analysis across the end-Triassic\",\"authors\":\"Xia Hua , David B. Kemp , Jun Shen , Runsheng Yin , Xin Jin , Chunju Huang\",\"doi\":\"10.1016/j.gloplacha.2024.104589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mercury (Hg) anomalies in sedimentary rocks have been increasingly used in paleoclimatology studies for tracing volcanic signals, as Hg emissions from volcanic activity can cause contemporaneous sedimentary Hg enrichment. However, non-volcanic sedimentary controls on Hg have clear potential to mask these signals. These factors include host phase variability linked to environmentally controlled sourcing and settling changes, and/or variable preservation conditions associated with weathering, oxidation and diagenesis. Such factors can limit the efficacy of Hg as a paleo-volcanism proxy. In this study, sedimentary effects on Hg concentration within a complex depositional system in southwest England (St. Audrie's Bay) across the end-Triassic have been analyzed, together with published data from coeval end-Triassic sections globally – an interval of time coeval with the Central Atlantic Magmatic Province (CAMP). Our statistical analysis of Hg and associated geochemical data highlights significant fluctuations in sedimentary Hg due to relative supply differences in Hg and host phases, as well as the changing types and preservation conditions of host phases. End-Triassic sections globally show a consistent undersupply of Hg relative to organic matter across the end-Triassic mass extinction (ETME). To better assess the magnitude and significance of possible Hg enrichments in sedimentary rocks, we present a statistical method for quantifying Hg anomalies to robustly distinguish Hg variations linked to host phase/depositional changes from paleo-volcanism. Our method supports the existence of transient but asynchronous Hg anomalies linked to volcanism from the CAMP across the end-Triassic in most global sections, albeit not in the St. Audrie's Bay section.</div></div>\",\"PeriodicalId\":55089,\"journal\":{\"name\":\"Global and Planetary Change\",\"volume\":\"242 \",\"pages\":\"Article 104589\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global and Planetary Change\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921818124002364\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global and Planetary Change","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921818124002364","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Mercury enrichments as a paleo-volcanism proxy: Sedimentary bias and a critical analysis across the end-Triassic
Mercury (Hg) anomalies in sedimentary rocks have been increasingly used in paleoclimatology studies for tracing volcanic signals, as Hg emissions from volcanic activity can cause contemporaneous sedimentary Hg enrichment. However, non-volcanic sedimentary controls on Hg have clear potential to mask these signals. These factors include host phase variability linked to environmentally controlled sourcing and settling changes, and/or variable preservation conditions associated with weathering, oxidation and diagenesis. Such factors can limit the efficacy of Hg as a paleo-volcanism proxy. In this study, sedimentary effects on Hg concentration within a complex depositional system in southwest England (St. Audrie's Bay) across the end-Triassic have been analyzed, together with published data from coeval end-Triassic sections globally – an interval of time coeval with the Central Atlantic Magmatic Province (CAMP). Our statistical analysis of Hg and associated geochemical data highlights significant fluctuations in sedimentary Hg due to relative supply differences in Hg and host phases, as well as the changing types and preservation conditions of host phases. End-Triassic sections globally show a consistent undersupply of Hg relative to organic matter across the end-Triassic mass extinction (ETME). To better assess the magnitude and significance of possible Hg enrichments in sedimentary rocks, we present a statistical method for quantifying Hg anomalies to robustly distinguish Hg variations linked to host phase/depositional changes from paleo-volcanism. Our method supports the existence of transient but asynchronous Hg anomalies linked to volcanism from the CAMP across the end-Triassic in most global sections, albeit not in the St. Audrie's Bay section.
期刊介绍:
The objective of the journal Global and Planetary Change is to provide a multi-disciplinary overview of the processes taking place in the Earth System and involved in planetary change over time. The journal focuses on records of the past and current state of the earth system, and future scenarios , and their link to global environmental change. Regional or process-oriented studies are welcome if they discuss global implications. Topics include, but are not limited to, changes in the dynamics and composition of the atmosphere, oceans and cryosphere, as well as climate change, sea level variation, observations/modelling of Earth processes from deep to (near-)surface and their coupling, global ecology, biogeography and the resilience/thresholds in ecosystems.
Key criteria for the consideration of manuscripts are (a) the relevance for the global scientific community and/or (b) the wider implications for global scale problems, preferably combined with (c) having a significance beyond a single discipline. A clear focus on key processes associated with planetary scale change is strongly encouraged.
Manuscripts can be submitted as either research contributions or as a review article. Every effort should be made towards the presentation of research outcomes in an understandable way for a broad readership.