{"title":"含有不同等量氧化锌和氧化钡的钙钠硼酸盐玻璃的光学和伽马射线屏蔽特性","authors":"","doi":"10.1016/j.pnucene.2024.105451","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents the optical and radiation shielding characteristics of a newly developed borate glass, doped with equal quantities of ZnO and BaO, and modified with calcium and sodium. The glass samples were prepared using the melt quenching technique, with the composition formula (80-x-y)B<sub>2</sub>O<sub>3</sub>-10CaO-10Na<sub>2</sub>O-xZnO-yBaO, where x and y were varied at 5, 10, 15, and 20 mol%. Comprehensive analyses of the optical and gamma shielding properties were carried out using UV–visible spectrophotometry and Phy-X software, respectively. The UV–visible spectroscopic data allowed for the calculation of various parameters including the direct and indirect optical energy band gaps, refractive index, dielectric constants, and polarizability. It was observed that the direct optical energy band gap decreased from 3.91 to 3.10 eV, while the indirect band gap fell from 3.41 to 2.91 eV with increasing ZnO and BaO content. Conversely, the refractive index rose from 2.29 to 2.42 with higher concentrations of ZnO and BaO. The linear attenuation coefficients (LACs) across the range of 0.015–15 MeV exhibited an inverse relationship. Among the glass samples, B40Zn20Ba20 exhibited the lowest tenth value layer (TVL) and the highest effective atomic number (Zeff), indicating its superior performance as a radiation shielding material. Overall, the produced glass samples demonstrate commendable properties for both optical applications and radiation shielding.</div></div>","PeriodicalId":20617,"journal":{"name":"Progress in Nuclear Energy","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0149197024004013/pdfft?md5=cee1d69d9886f1635b396a7acef525ec&pid=1-s2.0-S0149197024004013-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Optical and gamma-ray shielding properties of calcium sodium borate glasses with varied equal concentrations of ZnO and BaO\",\"authors\":\"\",\"doi\":\"10.1016/j.pnucene.2024.105451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents the optical and radiation shielding characteristics of a newly developed borate glass, doped with equal quantities of ZnO and BaO, and modified with calcium and sodium. The glass samples were prepared using the melt quenching technique, with the composition formula (80-x-y)B<sub>2</sub>O<sub>3</sub>-10CaO-10Na<sub>2</sub>O-xZnO-yBaO, where x and y were varied at 5, 10, 15, and 20 mol%. Comprehensive analyses of the optical and gamma shielding properties were carried out using UV–visible spectrophotometry and Phy-X software, respectively. The UV–visible spectroscopic data allowed for the calculation of various parameters including the direct and indirect optical energy band gaps, refractive index, dielectric constants, and polarizability. It was observed that the direct optical energy band gap decreased from 3.91 to 3.10 eV, while the indirect band gap fell from 3.41 to 2.91 eV with increasing ZnO and BaO content. Conversely, the refractive index rose from 2.29 to 2.42 with higher concentrations of ZnO and BaO. The linear attenuation coefficients (LACs) across the range of 0.015–15 MeV exhibited an inverse relationship. Among the glass samples, B40Zn20Ba20 exhibited the lowest tenth value layer (TVL) and the highest effective atomic number (Zeff), indicating its superior performance as a radiation shielding material. Overall, the produced glass samples demonstrate commendable properties for both optical applications and radiation shielding.</div></div>\",\"PeriodicalId\":20617,\"journal\":{\"name\":\"Progress in Nuclear Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0149197024004013/pdfft?md5=cee1d69d9886f1635b396a7acef525ec&pid=1-s2.0-S0149197024004013-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Nuclear Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0149197024004013\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0149197024004013","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
本研究介绍了一种新开发的掺杂了等量氧化锌和氧化钡并用钙和钠改性的硼酸盐玻璃的光学和辐射屏蔽特性。玻璃样品采用熔体淬火技术制备,其组成式为 (80-x-y)B2O3-10CaO-10Na2O-xZnO-yBaO ,其中 x 和 y 分别为 5、10、15 和 20 摩尔%。紫外可见分光光度法和 Phy-X 软件分别对光学和伽马屏蔽特性进行了全面分析。紫外可见光谱数据可用于计算各种参数,包括直接和间接光学能带隙、折射率、介电常数和极化性。结果表明,随着氧化锌和氧化钡含量的增加,直接光能带隙从 3.91 eV 下降到 3.10 eV,而间接能带隙则从 3.41 eV 下降到 2.91 eV。相反,随着 ZnO 和 BaO 含量的增加,折射率从 2.29 上升到 2.42。在 0.015-15 MeV 的范围内,线性衰减系数(LAC)呈反比关系。在玻璃样品中,B40Zn20Ba20 的十值层(TVL)最低,有效原子序数(Zeff)最高,表明其作为辐射屏蔽材料的性能优越。总体而言,所生产的玻璃样品在光学应用和辐射屏蔽方面都表现出了值得称道的性能。
Optical and gamma-ray shielding properties of calcium sodium borate glasses with varied equal concentrations of ZnO and BaO
This study presents the optical and radiation shielding characteristics of a newly developed borate glass, doped with equal quantities of ZnO and BaO, and modified with calcium and sodium. The glass samples were prepared using the melt quenching technique, with the composition formula (80-x-y)B2O3-10CaO-10Na2O-xZnO-yBaO, where x and y were varied at 5, 10, 15, and 20 mol%. Comprehensive analyses of the optical and gamma shielding properties were carried out using UV–visible spectrophotometry and Phy-X software, respectively. The UV–visible spectroscopic data allowed for the calculation of various parameters including the direct and indirect optical energy band gaps, refractive index, dielectric constants, and polarizability. It was observed that the direct optical energy band gap decreased from 3.91 to 3.10 eV, while the indirect band gap fell from 3.41 to 2.91 eV with increasing ZnO and BaO content. Conversely, the refractive index rose from 2.29 to 2.42 with higher concentrations of ZnO and BaO. The linear attenuation coefficients (LACs) across the range of 0.015–15 MeV exhibited an inverse relationship. Among the glass samples, B40Zn20Ba20 exhibited the lowest tenth value layer (TVL) and the highest effective atomic number (Zeff), indicating its superior performance as a radiation shielding material. Overall, the produced glass samples demonstrate commendable properties for both optical applications and radiation shielding.
期刊介绍:
Progress in Nuclear Energy is an international review journal covering all aspects of nuclear science and engineering. In keeping with the maturity of nuclear power, articles on safety, siting and environmental problems are encouraged, as are those associated with economics and fuel management. However, basic physics and engineering will remain an important aspect of the editorial policy. Articles published are either of a review nature or present new material in more depth. They are aimed at researchers and technically-oriented managers working in the nuclear energy field.
Please note the following:
1) PNE seeks high quality research papers which are medium to long in length. Short research papers should be submitted to the journal Annals in Nuclear Energy.
2) PNE reserves the right to reject papers which are based solely on routine application of computer codes used to produce reactor designs or explain existing reactor phenomena. Such papers, although worthy, are best left as laboratory reports whereas Progress in Nuclear Energy seeks papers of originality, which are archival in nature, in the fields of mathematical and experimental nuclear technology, including fission, fusion (blanket physics, radiation damage), safety, materials aspects, economics, etc.
3) Review papers, which may occasionally be invited, are particularly sought by the journal in these fields.