以中国西北地区为例,用于太阳能和风能预测的深度学习模型

IF 6 Q1 ENGINEERING, MULTIDISCIPLINARY Results in Engineering Pub Date : 2024-09-19 DOI:10.1016/j.rineng.2024.102939
Pengyu Li , Huiyu Yang , Han Wu , Yujia Wang , Hao Su , Tianlong Zheng , Fang Zhu , Guangtao Zhang , Yu Han
{"title":"以中国西北地区为例,用于太阳能和风能预测的深度学习模型","authors":"Pengyu Li ,&nbsp;Huiyu Yang ,&nbsp;Han Wu ,&nbsp;Yujia Wang ,&nbsp;Hao Su ,&nbsp;Tianlong Zheng ,&nbsp;Fang Zhu ,&nbsp;Guangtao Zhang ,&nbsp;Yu Han","doi":"10.1016/j.rineng.2024.102939","DOIUrl":null,"url":null,"abstract":"<div><div>The growing demand for renewable energy sources like wind and solar power requires accurate and reliable forecasting techniques for effective planning and operation. This study presents an attention-based spatial-temporal graph neural network–long short-term memory (ASTGNN-LSTM) model designed to predict wind speed and solar radiation using 20 years of meteorological data from five regions in Northwest China. The ASTGNN-LSTM model shows significant performance improvements over traditional methods, such as the historical average model, autoregressive integrated moving average model, and graph convolutional network with LSTM. After optimizing the hidden layers and learning rate, the relative errors for predicting wind speed and solar radiation are reduced to 27.15 % and 6.11 %, respectively. Sensitivity analysis reveals that location data have the most significant impact on predictions. These findings demonstrate that the ASTGNN-LSTM model effectively captures nonlinear relationships and can enhance renewable energy planning and management.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"24 ","pages":"Article 102939"},"PeriodicalIF":6.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590123024011940/pdfft?md5=8b6521ea4e24d037da46a010211f0588&pid=1-s2.0-S2590123024011940-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Deep learning model for solar and wind energy forecasting considering Northwest China as an example\",\"authors\":\"Pengyu Li ,&nbsp;Huiyu Yang ,&nbsp;Han Wu ,&nbsp;Yujia Wang ,&nbsp;Hao Su ,&nbsp;Tianlong Zheng ,&nbsp;Fang Zhu ,&nbsp;Guangtao Zhang ,&nbsp;Yu Han\",\"doi\":\"10.1016/j.rineng.2024.102939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The growing demand for renewable energy sources like wind and solar power requires accurate and reliable forecasting techniques for effective planning and operation. This study presents an attention-based spatial-temporal graph neural network–long short-term memory (ASTGNN-LSTM) model designed to predict wind speed and solar radiation using 20 years of meteorological data from five regions in Northwest China. The ASTGNN-LSTM model shows significant performance improvements over traditional methods, such as the historical average model, autoregressive integrated moving average model, and graph convolutional network with LSTM. After optimizing the hidden layers and learning rate, the relative errors for predicting wind speed and solar radiation are reduced to 27.15 % and 6.11 %, respectively. Sensitivity analysis reveals that location data have the most significant impact on predictions. These findings demonstrate that the ASTGNN-LSTM model effectively captures nonlinear relationships and can enhance renewable energy planning and management.</div></div>\",\"PeriodicalId\":36919,\"journal\":{\"name\":\"Results in Engineering\",\"volume\":\"24 \",\"pages\":\"Article 102939\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590123024011940/pdfft?md5=8b6521ea4e24d037da46a010211f0588&pid=1-s2.0-S2590123024011940-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590123024011940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123024011940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对风能和太阳能等可再生能源日益增长的需求需要准确可靠的预测技术来进行有效的规划和运行。本研究提出了一种基于注意力的时空图神经网络-长短期记忆(ASTGNN-LSTM)模型,旨在利用中国西北五个地区 20 年的气象数据预测风速和太阳辐射。ASTGNN-LSTM 模型与历史平均模型、自回归综合移动平均模型和图卷积网络与 LSTM 等传统方法相比,性能有显著提高。在优化隐藏层和学习率之后,预测风速和太阳辐射的相对误差分别降低到 27.15 % 和 6.11 %。灵敏度分析表明,位置数据对预测的影响最大。这些研究结果表明,ASTGNN-LSTM 模型能有效捕捉非线性关系,并能加强可再生能源的规划和管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep learning model for solar and wind energy forecasting considering Northwest China as an example
The growing demand for renewable energy sources like wind and solar power requires accurate and reliable forecasting techniques for effective planning and operation. This study presents an attention-based spatial-temporal graph neural network–long short-term memory (ASTGNN-LSTM) model designed to predict wind speed and solar radiation using 20 years of meteorological data from five regions in Northwest China. The ASTGNN-LSTM model shows significant performance improvements over traditional methods, such as the historical average model, autoregressive integrated moving average model, and graph convolutional network with LSTM. After optimizing the hidden layers and learning rate, the relative errors for predicting wind speed and solar radiation are reduced to 27.15 % and 6.11 %, respectively. Sensitivity analysis reveals that location data have the most significant impact on predictions. These findings demonstrate that the ASTGNN-LSTM model effectively captures nonlinear relationships and can enhance renewable energy planning and management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
期刊最新文献
Advancements and applications of smart contact lenses: A comprehensive review Transforming food waste into energy: A comprehensive review Thermal management strategies for lithium-ion batteries in electric vehicles: A comprehensive review of nanofluid-based battery thermal management systems A comprehensive recent review and practical insights on the usage of advanced materials and enhancement strategies in thermoelectric applications Integrating artificial intelligence in nanomembrane systems for advanced water desalination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1