类地热条件下钢铁腐蚀产物的制图和划分

IF 3.5 2区 工程技术 Q3 ENERGY & FUELS Geothermics Pub Date : 2024-09-24 DOI:10.1016/j.geothermics.2024.103172
Stefania Liakaki-Stavropoulou, Konstantinos D. Demadis
{"title":"类地热条件下钢铁腐蚀产物的制图和划分","authors":"Stefania Liakaki-Stavropoulou,&nbsp;Konstantinos D. Demadis","doi":"10.1016/j.geothermics.2024.103172","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we attempt to understand the corrosion behavior of carbon (mild) steel (a common structural component in water handling installations) and the factors that influence it, by identifying various corrosion products that form under diverse conditions relevant to geothermal systems. Hence, experiments were performed under variable stressful experimental conditions, by systematically studying the effect of certain important variables, such as temperature and brine composition. Therefore, three brines and four temperatures were selected (ambient, 60, 90, and 130 °C), while the pH was kept constant at ∼ 7. It was found that for all water qualities corrosion rates (quantified by gravimetric methods and soluble Fe measurements) are not directly proportional to the temperature, with the measured values being the lowest at RT and highest at <em>T</em> = 130 °C. In the two intermediate temperatures (60 and 90 °C) the corrosion rates are lower. A possible explanation for this could be the fact that corrosion products can form films on the metal surface, affecting the corrosion aggressiveness, and thus corrosion rates. The full characterization of precipitates collected from these experiments led to the identification of the corrosion products and to the correlation of corrosion aggressiveness (due temperature and water quality) with the identity of each corrosion product. The variability in color of the corrosion products on the metal surfaces was an indication of the formation of lepidocrocite and magnetite films, as demonstrated by the orange and black color of the films on the specimens, respectively. The identification of the corrosion products that formed under the selected experimental conditions was achieved by the physicochemical characterization (ATR-IR and powder XRD) of the iron deposits collected from the control experiments. These studies confirmed the qualitative indications based on the deposit color.</div></div>","PeriodicalId":55095,"journal":{"name":"Geothermics","volume":"125 ","pages":"Article 103172"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mapping and delineation of steel corrosion products under geothermal-like conditions\",\"authors\":\"Stefania Liakaki-Stavropoulou,&nbsp;Konstantinos D. Demadis\",\"doi\":\"10.1016/j.geothermics.2024.103172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we attempt to understand the corrosion behavior of carbon (mild) steel (a common structural component in water handling installations) and the factors that influence it, by identifying various corrosion products that form under diverse conditions relevant to geothermal systems. Hence, experiments were performed under variable stressful experimental conditions, by systematically studying the effect of certain important variables, such as temperature and brine composition. Therefore, three brines and four temperatures were selected (ambient, 60, 90, and 130 °C), while the pH was kept constant at ∼ 7. It was found that for all water qualities corrosion rates (quantified by gravimetric methods and soluble Fe measurements) are not directly proportional to the temperature, with the measured values being the lowest at RT and highest at <em>T</em> = 130 °C. In the two intermediate temperatures (60 and 90 °C) the corrosion rates are lower. A possible explanation for this could be the fact that corrosion products can form films on the metal surface, affecting the corrosion aggressiveness, and thus corrosion rates. The full characterization of precipitates collected from these experiments led to the identification of the corrosion products and to the correlation of corrosion aggressiveness (due temperature and water quality) with the identity of each corrosion product. The variability in color of the corrosion products on the metal surfaces was an indication of the formation of lepidocrocite and magnetite films, as demonstrated by the orange and black color of the films on the specimens, respectively. The identification of the corrosion products that formed under the selected experimental conditions was achieved by the physicochemical characterization (ATR-IR and powder XRD) of the iron deposits collected from the control experiments. These studies confirmed the qualitative indications based on the deposit color.</div></div>\",\"PeriodicalId\":55095,\"journal\":{\"name\":\"Geothermics\",\"volume\":\"125 \",\"pages\":\"Article 103172\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geothermics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037565052400258X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037565052400258X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们试图通过确定在地热系统相关的各种条件下形成的各种腐蚀产物,来了解碳(低碳)钢(水处理装置中的常见结构部件)的腐蚀行为及其影响因素。因此,通过系统研究某些重要变量(如温度和盐水成分)的影响,在不同的应力实验条件下进行了实验。因此,实验选择了三种盐水和四种温度(常温、60、90 和 130 °C),pH 值保持在 ∼ 7。研究发现,对于所有水质,腐蚀率(通过重量法和可溶性铁测量法量化)与温度并不成正比,在常温下测量值最低,而在 T = 130 °C 时测量值最高。在两个中间温度(60 和 90 °C)下,腐蚀率较低。可能的解释是,腐蚀产物会在金属表面形成薄膜,影响腐蚀侵蚀性,从而影响腐蚀速率。通过对从这些实验中收集到的沉淀物进行全面表征,可以确定腐蚀产物,并将腐蚀侵蚀性(由于温度和水质)与每种腐蚀产物的特性联系起来。金属表面腐蚀产物颜色的变化表明形成了鳞片岩和磁铁矿薄膜,试样上的薄膜颜色分别为橙色和黑色。通过对从对照实验中收集的铁沉积物进行物理化学表征(ATR-IR 和粉末 XRD),确定了在选定实验条件下形成的腐蚀产物。这些研究证实了基于沉积物颜色的定性指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mapping and delineation of steel corrosion products under geothermal-like conditions
In this paper we attempt to understand the corrosion behavior of carbon (mild) steel (a common structural component in water handling installations) and the factors that influence it, by identifying various corrosion products that form under diverse conditions relevant to geothermal systems. Hence, experiments were performed under variable stressful experimental conditions, by systematically studying the effect of certain important variables, such as temperature and brine composition. Therefore, three brines and four temperatures were selected (ambient, 60, 90, and 130 °C), while the pH was kept constant at ∼ 7. It was found that for all water qualities corrosion rates (quantified by gravimetric methods and soluble Fe measurements) are not directly proportional to the temperature, with the measured values being the lowest at RT and highest at T = 130 °C. In the two intermediate temperatures (60 and 90 °C) the corrosion rates are lower. A possible explanation for this could be the fact that corrosion products can form films on the metal surface, affecting the corrosion aggressiveness, and thus corrosion rates. The full characterization of precipitates collected from these experiments led to the identification of the corrosion products and to the correlation of corrosion aggressiveness (due temperature and water quality) with the identity of each corrosion product. The variability in color of the corrosion products on the metal surfaces was an indication of the formation of lepidocrocite and magnetite films, as demonstrated by the orange and black color of the films on the specimens, respectively. The identification of the corrosion products that formed under the selected experimental conditions was achieved by the physicochemical characterization (ATR-IR and powder XRD) of the iron deposits collected from the control experiments. These studies confirmed the qualitative indications based on the deposit color.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geothermics
Geothermics 工程技术-地球科学综合
CiteScore
7.70
自引率
15.40%
发文量
237
审稿时长
4.5 months
期刊介绍: Geothermics is an international journal devoted to the research and development of geothermal energy. The International Board of Editors of Geothermics, which comprises specialists in the various aspects of geothermal resources, exploration and development, guarantees the balanced, comprehensive view of scientific and technological developments in this promising energy field. It promulgates the state of the art and science of geothermal energy, its exploration and exploitation through a regular exchange of information from all parts of the world. The journal publishes articles dealing with the theory, exploration techniques and all aspects of the utilization of geothermal resources. Geothermics serves as the scientific house, or exchange medium, through which the growing community of geothermal specialists can provide and receive information.
期刊最新文献
A novel machine learning approach for reservoir temperature prediction Scaling in fractured geothermal carbonate reservoir rocks: An experimental approach Research on acidizing blockage removal and perfusion enhancement technology for sandstone geothermal reservoir recharge wells Experimental investigation on the impact of the asymmetrical heat exchange and operation modes on the thermal performance of a bored energy pile in unsaturated soil: A case study in Brazil Present-day deep geothermal field and lithospheric thermal structure in the Ordos Basin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1