{"title":"意大利校舍的国家风险评估:MARS 项目经验","authors":"","doi":"10.1016/j.ijdrr.2024.104822","DOIUrl":null,"url":null,"abstract":"<div><div>Strategic buildings, such as schools, play a crucial role in civil society. They are essential not only for the well-being of communities but also for their significance during the emergency and recovery phases following an earthquake. Reliable risk assessment is a powerful tool for implementing effective mitigation strategies. While considerable work has been already done in the literature to develop fragility curves and risk studies for residential buildings, there remains a noticeable gap in addressing risk assessment for school portfolios. As part of the 2019–2021 MARS (Seismic Risk MAps) project, funded by the Italian Civil Protection Department and involving the ReLUIS consortium along with the EUCENTRE foundation, a specific task was dedicated to evaluating seismic risk for the Italian school buildings. In this context, eight research units combined their expertise to develop a consensus-based vulnerability model, known as the “School-MARS model”. This model integrates fragility curves based on various approaches (i.e. empirical, mechanical-analytical, mechanical-numerical and hybrid) and is tailored to archetypes representative of the Italian school buildings. The main goal of the paper is outlining the methodology used to define the “School-MARS vulnerability model”. Moreover, the paper demonstrates the application of the latter for performing intensity-based and time-based risk analyses. Specifically, the results are presented in terms of damage distribution and usability ratings expected for the entire stock of Italian school building. Notably, these results indicate that approximately 26 % of Reinforced Concrete (RC) buildings and 31 % of Unreinforced Masonry (URM) structures may become unusable due to potential earthquakes expected in the next 50 years.</div></div>","PeriodicalId":13915,"journal":{"name":"International journal of disaster risk reduction","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212420924005843/pdfft?md5=b60a43f3f8a6b75ce0a9e5bde12c7215&pid=1-s2.0-S2212420924005843-main.pdf","citationCount":"0","resultStr":"{\"title\":\"National risk assessment of Italian school buildings: The MARS project experience\",\"authors\":\"\",\"doi\":\"10.1016/j.ijdrr.2024.104822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Strategic buildings, such as schools, play a crucial role in civil society. They are essential not only for the well-being of communities but also for their significance during the emergency and recovery phases following an earthquake. Reliable risk assessment is a powerful tool for implementing effective mitigation strategies. While considerable work has been already done in the literature to develop fragility curves and risk studies for residential buildings, there remains a noticeable gap in addressing risk assessment for school portfolios. As part of the 2019–2021 MARS (Seismic Risk MAps) project, funded by the Italian Civil Protection Department and involving the ReLUIS consortium along with the EUCENTRE foundation, a specific task was dedicated to evaluating seismic risk for the Italian school buildings. In this context, eight research units combined their expertise to develop a consensus-based vulnerability model, known as the “School-MARS model”. This model integrates fragility curves based on various approaches (i.e. empirical, mechanical-analytical, mechanical-numerical and hybrid) and is tailored to archetypes representative of the Italian school buildings. The main goal of the paper is outlining the methodology used to define the “School-MARS vulnerability model”. Moreover, the paper demonstrates the application of the latter for performing intensity-based and time-based risk analyses. Specifically, the results are presented in terms of damage distribution and usability ratings expected for the entire stock of Italian school building. Notably, these results indicate that approximately 26 % of Reinforced Concrete (RC) buildings and 31 % of Unreinforced Masonry (URM) structures may become unusable due to potential earthquakes expected in the next 50 years.</div></div>\",\"PeriodicalId\":13915,\"journal\":{\"name\":\"International journal of disaster risk reduction\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2212420924005843/pdfft?md5=b60a43f3f8a6b75ce0a9e5bde12c7215&pid=1-s2.0-S2212420924005843-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of disaster risk reduction\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212420924005843\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of disaster risk reduction","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212420924005843","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
National risk assessment of Italian school buildings: The MARS project experience
Strategic buildings, such as schools, play a crucial role in civil society. They are essential not only for the well-being of communities but also for their significance during the emergency and recovery phases following an earthquake. Reliable risk assessment is a powerful tool for implementing effective mitigation strategies. While considerable work has been already done in the literature to develop fragility curves and risk studies for residential buildings, there remains a noticeable gap in addressing risk assessment for school portfolios. As part of the 2019–2021 MARS (Seismic Risk MAps) project, funded by the Italian Civil Protection Department and involving the ReLUIS consortium along with the EUCENTRE foundation, a specific task was dedicated to evaluating seismic risk for the Italian school buildings. In this context, eight research units combined their expertise to develop a consensus-based vulnerability model, known as the “School-MARS model”. This model integrates fragility curves based on various approaches (i.e. empirical, mechanical-analytical, mechanical-numerical and hybrid) and is tailored to archetypes representative of the Italian school buildings. The main goal of the paper is outlining the methodology used to define the “School-MARS vulnerability model”. Moreover, the paper demonstrates the application of the latter for performing intensity-based and time-based risk analyses. Specifically, the results are presented in terms of damage distribution and usability ratings expected for the entire stock of Italian school building. Notably, these results indicate that approximately 26 % of Reinforced Concrete (RC) buildings and 31 % of Unreinforced Masonry (URM) structures may become unusable due to potential earthquakes expected in the next 50 years.
期刊介绍:
The International Journal of Disaster Risk Reduction (IJDRR) is the journal for researchers, policymakers and practitioners across diverse disciplines: earth sciences and their implications; environmental sciences; engineering; urban studies; geography; and the social sciences. IJDRR publishes fundamental and applied research, critical reviews, policy papers and case studies with a particular focus on multi-disciplinary research that aims to reduce the impact of natural, technological, social and intentional disasters. IJDRR stimulates exchange of ideas and knowledge transfer on disaster research, mitigation, adaptation, prevention and risk reduction at all geographical scales: local, national and international.
Key topics:-
-multifaceted disaster and cascading disasters
-the development of disaster risk reduction strategies and techniques
-discussion and development of effective warning and educational systems for risk management at all levels
-disasters associated with climate change
-vulnerability analysis and vulnerability trends
-emerging risks
-resilience against disasters.
The journal particularly encourages papers that approach risk from a multi-disciplinary perspective.