在湖泊水处理过程中,利用钙-NOM 复合现象作为反渗透污垢缓解策略

Oranso T. Mahlangu, Samkeliso S. Ndzimandze, Mxolisi M. Motsa, Bhekie B. Mamba
{"title":"在湖泊水处理过程中,利用钙-NOM 复合现象作为反渗透污垢缓解策略","authors":"Oranso T. Mahlangu,&nbsp;Samkeliso S. Ndzimandze,&nbsp;Mxolisi M. Motsa,&nbsp;Bhekie B. Mamba","doi":"10.1016/j.advmem.2024.100105","DOIUrl":null,"url":null,"abstract":"<div><div>Organic fouling during reverse osmosis (RO) is exacerbated by the presence of calcium up to a limit where extremely high calcium concentration results in lesser fouling due to formation of large organic-calcium aggregates with lower cake resistance. Therefore, this work leveraged on this phenomenon and used calcium chloride as coagulant (at varying concentration) to reduce membrane fouling while enhancing NOM removal. Membrane cleaning efficiency through calcium-EDTA chelation which disintegrates the fouling layers was explored. RO fouling was performed with sodium alginate solutions and lake water. The fouled membranes were soaked in 0.1 ​mM EDTA (1 ​h) and backwashed with water to remove the fouling layer. Alginate fouling was worsened (45–85 ​%) by increase in calcium concentration up to 5 ​mM but lessened at &gt; 5 ​mM calcium concentration (35–15 ​%). Similar observations were made when filtering lake water, except that lesser fouling was observed at calcium concentrations greater than 15 ​mM. Membrane soaking in EDTA enhanced cleaning efficiency leading to over 90 ​% flux recovery for both alginate and late water. However, prolonged membrane exposure to 10 ​mM calcium resulted in slight decline in membrane salt rejection (&lt;2 ​% change) and tensile stress (1.3–1.1 ​N/mm<sup>2</sup>), while the membrane flux increased (&lt;3 ​% change). Finally, NOM removal improved with calcium addition (up to 90 ​%) – key in reducing potential formation of disinfection by-products due to addition of disinfection agents. The proposed use of calcium as a common coagulant/chelating agent for fouling mitigation/remediation during advanced membrane filtration has a potential for wider application and commercialization.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"4 ","pages":"Article 100105"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772823424000162/pdfft?md5=6a04c5ed5992132544fc080b3d866964&pid=1-s2.0-S2772823424000162-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Leveraging calcium-NOM complexation phenomenon as RO fouling mitigation strategy during treatment of lake water\",\"authors\":\"Oranso T. Mahlangu,&nbsp;Samkeliso S. Ndzimandze,&nbsp;Mxolisi M. Motsa,&nbsp;Bhekie B. Mamba\",\"doi\":\"10.1016/j.advmem.2024.100105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Organic fouling during reverse osmosis (RO) is exacerbated by the presence of calcium up to a limit where extremely high calcium concentration results in lesser fouling due to formation of large organic-calcium aggregates with lower cake resistance. Therefore, this work leveraged on this phenomenon and used calcium chloride as coagulant (at varying concentration) to reduce membrane fouling while enhancing NOM removal. Membrane cleaning efficiency through calcium-EDTA chelation which disintegrates the fouling layers was explored. RO fouling was performed with sodium alginate solutions and lake water. The fouled membranes were soaked in 0.1 ​mM EDTA (1 ​h) and backwashed with water to remove the fouling layer. Alginate fouling was worsened (45–85 ​%) by increase in calcium concentration up to 5 ​mM but lessened at &gt; 5 ​mM calcium concentration (35–15 ​%). Similar observations were made when filtering lake water, except that lesser fouling was observed at calcium concentrations greater than 15 ​mM. Membrane soaking in EDTA enhanced cleaning efficiency leading to over 90 ​% flux recovery for both alginate and late water. However, prolonged membrane exposure to 10 ​mM calcium resulted in slight decline in membrane salt rejection (&lt;2 ​% change) and tensile stress (1.3–1.1 ​N/mm<sup>2</sup>), while the membrane flux increased (&lt;3 ​% change). Finally, NOM removal improved with calcium addition (up to 90 ​%) – key in reducing potential formation of disinfection by-products due to addition of disinfection agents. The proposed use of calcium as a common coagulant/chelating agent for fouling mitigation/remediation during advanced membrane filtration has a potential for wider application and commercialization.</div></div>\",\"PeriodicalId\":100033,\"journal\":{\"name\":\"Advanced Membranes\",\"volume\":\"4 \",\"pages\":\"Article 100105\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772823424000162/pdfft?md5=6a04c5ed5992132544fc080b3d866964&pid=1-s2.0-S2772823424000162-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Membranes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772823424000162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Membranes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772823424000162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

反渗透(RO)过程中的有机污垢会因钙的存在而加剧,在一定限度内,极高浓度的钙会形成大的有机钙聚集体,降低滤饼阻力,从而减少污垢。因此,本研究利用这一现象,使用氯化钙作为混凝剂(浓度不同)来减少膜污垢,同时提高 NOM 的去除率。研究还探讨了通过钙-EDTA 螯合作用分解污垢层的膜清洁效率。使用海藻酸钠溶液和湖水进行反渗透膜污垢处理。将堵塞的膜浸泡在 0.1 mM EDTA 中(1 小时),然后用水反冲洗以去除堵塞层。钙浓度增加到 5 mM 时,藻酸盐污垢会加重(45-85%),但当钙浓度达到 > 5 mM 时,污垢会减轻(35-15%)。在过滤湖水时也观察到了类似的情况,只是当钙浓度超过 15 mM 时,污垢程度较轻。将膜浸泡在乙二胺四乙酸(EDTA)中可提高清洁效率,使藻酸水和晚期水的通量恢复率超过 90%。然而,将膜长时间暴露在 10 mM 的钙中会导致膜盐排斥(变化 2%)和拉伸应力(1.3-1.1 N/mm2)的轻微下降,而膜通量则会增加(变化 3%)。最后,钙的添加提高了对 NOM 的去除率(高达 90%)--这是减少因添加消毒剂而可能形成的消毒副产物的关键。在高级膜过滤过程中,建议使用钙作为普通混凝剂/螯合剂,以减少/修复污垢,这具有更广泛的应用和商业化潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leveraging calcium-NOM complexation phenomenon as RO fouling mitigation strategy during treatment of lake water
Organic fouling during reverse osmosis (RO) is exacerbated by the presence of calcium up to a limit where extremely high calcium concentration results in lesser fouling due to formation of large organic-calcium aggregates with lower cake resistance. Therefore, this work leveraged on this phenomenon and used calcium chloride as coagulant (at varying concentration) to reduce membrane fouling while enhancing NOM removal. Membrane cleaning efficiency through calcium-EDTA chelation which disintegrates the fouling layers was explored. RO fouling was performed with sodium alginate solutions and lake water. The fouled membranes were soaked in 0.1 ​mM EDTA (1 ​h) and backwashed with water to remove the fouling layer. Alginate fouling was worsened (45–85 ​%) by increase in calcium concentration up to 5 ​mM but lessened at > 5 ​mM calcium concentration (35–15 ​%). Similar observations were made when filtering lake water, except that lesser fouling was observed at calcium concentrations greater than 15 ​mM. Membrane soaking in EDTA enhanced cleaning efficiency leading to over 90 ​% flux recovery for both alginate and late water. However, prolonged membrane exposure to 10 ​mM calcium resulted in slight decline in membrane salt rejection (<2 ​% change) and tensile stress (1.3–1.1 ​N/mm2), while the membrane flux increased (<3 ​% change). Finally, NOM removal improved with calcium addition (up to 90 ​%) – key in reducing potential formation of disinfection by-products due to addition of disinfection agents. The proposed use of calcium as a common coagulant/chelating agent for fouling mitigation/remediation during advanced membrane filtration has a potential for wider application and commercialization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
0.00%
发文量
0
期刊最新文献
Progress in design of halloysite nanotubes-polymer nanocomposite membranes and their applications Metal-organic frameworks-based mixed matrix pervaporation membranes for recovery of organics Spray-assisted assembly of thin-film composite membranes in one process Erratum regarding Declaration of Competing Interest statements in previously published articles Metal-organic frameworks-based mixed matrix pervaporation membranes for recovery of organics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1