评估用于流式传感器数据中变化点识别的詹克斯自然断裂聚类算法

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Letters Pub Date : 2024-09-09 DOI:10.1109/LSENS.2024.3456292
Mahdi Saleh
{"title":"评估用于流式传感器数据中变化点识别的詹克斯自然断裂聚类算法","authors":"Mahdi Saleh","doi":"10.1109/LSENS.2024.3456292","DOIUrl":null,"url":null,"abstract":"This letter evaluates the performance of a nonsupervised clustering method for identifying abrupt changepoints in streaming sensor data. The proposed method utilizes the Jenks natural breaks (JNB) algorithm, applied in near real time using sliding temporal windows to analyze sections of sensor data and identify instances of significant phase changes. It is suitable for sensing applications that rely on detecting instantaneous changes in the sensed data for fast decisions, such as fire alarms, fault detection, and activity recognition. The method was applied to a custom dataset from 12 electrodes transitioning among different materials. Performance was evaluated based on detection accuracy and delay comparisons. Results demonstrate that applying JNB in a sliding window with a step size of half its length achieves the highest detection accuracy and the lowest error delay compared to nonoverlapping windows.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 10","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Jenks Natural Breaks Clustering Algorithm for Changepoint Identification in Streaming Sensor Data\",\"authors\":\"Mahdi Saleh\",\"doi\":\"10.1109/LSENS.2024.3456292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter evaluates the performance of a nonsupervised clustering method for identifying abrupt changepoints in streaming sensor data. The proposed method utilizes the Jenks natural breaks (JNB) algorithm, applied in near real time using sliding temporal windows to analyze sections of sensor data and identify instances of significant phase changes. It is suitable for sensing applications that rely on detecting instantaneous changes in the sensed data for fast decisions, such as fire alarms, fault detection, and activity recognition. The method was applied to a custom dataset from 12 electrodes transitioning among different materials. Performance was evaluated based on detection accuracy and delay comparisons. Results demonstrate that applying JNB in a sliding window with a step size of half its length achieves the highest detection accuracy and the lowest error delay compared to nonoverlapping windows.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"8 10\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10669784/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10669784/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

这封信评估了一种非监督聚类方法的性能,该方法用于识别流式传感器数据中的突然变化点。所提出的方法利用詹克斯自然断裂(JNB)算法,使用滑动时间窗口对传感器数据的部分进行近乎实时的分析,并识别重大相位变化的实例。该方法适用于依赖检测传感数据中的瞬时变化来做出快速决策的传感应用,如火灾报警、故障检测和活动识别。该方法应用于一个定制数据集,该数据集来自 12 个在不同材料间转换的电极。根据检测精度和延迟比较对性能进行了评估。结果表明,与非重叠窗口相比,在步长为其一半的滑动窗口中应用 JNB 可以获得最高的检测精度和最低的误差延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of Jenks Natural Breaks Clustering Algorithm for Changepoint Identification in Streaming Sensor Data
This letter evaluates the performance of a nonsupervised clustering method for identifying abrupt changepoints in streaming sensor data. The proposed method utilizes the Jenks natural breaks (JNB) algorithm, applied in near real time using sliding temporal windows to analyze sections of sensor data and identify instances of significant phase changes. It is suitable for sensing applications that rely on detecting instantaneous changes in the sensed data for fast decisions, such as fire alarms, fault detection, and activity recognition. The method was applied to a custom dataset from 12 electrodes transitioning among different materials. Performance was evaluated based on detection accuracy and delay comparisons. Results demonstrate that applying JNB in a sliding window with a step size of half its length achieves the highest detection accuracy and the lowest error delay compared to nonoverlapping windows.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
期刊最新文献
Front Cover IEEE Sensors Council Information Table of Contents IEEE Sensors Letters Subject Categories for Article Numbering Information IEEE Sensors Letters Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1