William Gearty, Lawrence H. Uricchio, S. Kathleen Lyons
{"title":"调查非暴虐陆生哺乳动物群落中体型差异的生物和非生物驱动因素","authors":"William Gearty, Lawrence H. Uricchio, S. Kathleen Lyons","doi":"10.1111/geb.13913","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>The species that compose local communities possess unique sets of functional and ecological traits that can be used as indicators of biotic and abiotic variation across space and time. Body size is a particularly relevant trait because species with different body sizes typically have different life history strategies and occupy distinct niches. Here we used the body sizes of non-volant (i.e., non-flying) terrestrial mammals to quantify and compare the body size disparity of mammal communities across the globe.</p>\n </section>\n \n <section>\n \n <h3> Location</h3>\n \n <p>Global.</p>\n </section>\n \n <section>\n \n <h3> Time Period</h3>\n \n <p>Present.</p>\n </section>\n \n <section>\n \n <h3> Major Taxa Studied</h3>\n \n <p>Non-volant terrestrial mammals.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We used IUCN range maps of 3982 terrestrial mammals to identify 1876 communities. We then combined diet data with data on climate, elevation and anthropogenic pressures to evaluate these variables' relative importance on the observed body size dispersion of these communities and its deviation from a null model.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Dispersion for these communities is significantly greater than expected in 54% of communities and significantly less than expected in 30% of communities. The number of very large species, continent, range sizes, diet disparity and annual temperature collectively explain > 50% of the variation in observed dispersion, whereas continent, the number of very large species, and precipitation collectively explain > 30% of the deviation from the null model.</p>\n </section>\n \n <section>\n \n <h3> Main Conclusions</h3>\n \n <p>Climate and elevation have minimal predictive power, suggesting that biotic factors may be more important for explaining community body size distributions. However, continent is consistently a strong predictor of dispersion, likely due to it capturing the combined effects of climate, size-selective human-induced extinctions and more. Overall, our results are consistent with several plausible explanations, including, but not limited to, competitive exclusion, unequal distribution of resources, within-community environmental heterogeneity, habitat filtering and ecosystem engineering. Further work focusing on other confounding variables, at finer spatial scales and/or within more causal frameworks is required to better understand the driver(s) of these patterns.</p>\n </section>\n </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 12","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13913","citationCount":"0","resultStr":"{\"title\":\"Investigating the Biotic and Abiotic Drivers of Body Size Disparity in Communities of Non-Volant Terrestrial Mammals\",\"authors\":\"William Gearty, Lawrence H. Uricchio, S. Kathleen Lyons\",\"doi\":\"10.1111/geb.13913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Aim</h3>\\n \\n <p>The species that compose local communities possess unique sets of functional and ecological traits that can be used as indicators of biotic and abiotic variation across space and time. Body size is a particularly relevant trait because species with different body sizes typically have different life history strategies and occupy distinct niches. Here we used the body sizes of non-volant (i.e., non-flying) terrestrial mammals to quantify and compare the body size disparity of mammal communities across the globe.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Location</h3>\\n \\n <p>Global.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Time Period</h3>\\n \\n <p>Present.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Major Taxa Studied</h3>\\n \\n <p>Non-volant terrestrial mammals.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We used IUCN range maps of 3982 terrestrial mammals to identify 1876 communities. We then combined diet data with data on climate, elevation and anthropogenic pressures to evaluate these variables' relative importance on the observed body size dispersion of these communities and its deviation from a null model.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Dispersion for these communities is significantly greater than expected in 54% of communities and significantly less than expected in 30% of communities. The number of very large species, continent, range sizes, diet disparity and annual temperature collectively explain > 50% of the variation in observed dispersion, whereas continent, the number of very large species, and precipitation collectively explain > 30% of the deviation from the null model.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Main Conclusions</h3>\\n \\n <p>Climate and elevation have minimal predictive power, suggesting that biotic factors may be more important for explaining community body size distributions. However, continent is consistently a strong predictor of dispersion, likely due to it capturing the combined effects of climate, size-selective human-induced extinctions and more. Overall, our results are consistent with several plausible explanations, including, but not limited to, competitive exclusion, unequal distribution of resources, within-community environmental heterogeneity, habitat filtering and ecosystem engineering. Further work focusing on other confounding variables, at finer spatial scales and/or within more causal frameworks is required to better understand the driver(s) of these patterns.</p>\\n </section>\\n </div>\",\"PeriodicalId\":176,\"journal\":{\"name\":\"Global Ecology and Biogeography\",\"volume\":\"33 12\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13913\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Ecology and Biogeography\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/geb.13913\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Ecology and Biogeography","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/geb.13913","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Investigating the Biotic and Abiotic Drivers of Body Size Disparity in Communities of Non-Volant Terrestrial Mammals
Aim
The species that compose local communities possess unique sets of functional and ecological traits that can be used as indicators of biotic and abiotic variation across space and time. Body size is a particularly relevant trait because species with different body sizes typically have different life history strategies and occupy distinct niches. Here we used the body sizes of non-volant (i.e., non-flying) terrestrial mammals to quantify and compare the body size disparity of mammal communities across the globe.
Location
Global.
Time Period
Present.
Major Taxa Studied
Non-volant terrestrial mammals.
Methods
We used IUCN range maps of 3982 terrestrial mammals to identify 1876 communities. We then combined diet data with data on climate, elevation and anthropogenic pressures to evaluate these variables' relative importance on the observed body size dispersion of these communities and its deviation from a null model.
Results
Dispersion for these communities is significantly greater than expected in 54% of communities and significantly less than expected in 30% of communities. The number of very large species, continent, range sizes, diet disparity and annual temperature collectively explain > 50% of the variation in observed dispersion, whereas continent, the number of very large species, and precipitation collectively explain > 30% of the deviation from the null model.
Main Conclusions
Climate and elevation have minimal predictive power, suggesting that biotic factors may be more important for explaining community body size distributions. However, continent is consistently a strong predictor of dispersion, likely due to it capturing the combined effects of climate, size-selective human-induced extinctions and more. Overall, our results are consistent with several plausible explanations, including, but not limited to, competitive exclusion, unequal distribution of resources, within-community environmental heterogeneity, habitat filtering and ecosystem engineering. Further work focusing on other confounding variables, at finer spatial scales and/or within more causal frameworks is required to better understand the driver(s) of these patterns.
期刊介绍:
Global Ecology and Biogeography (GEB) welcomes papers that investigate broad-scale (in space, time and/or taxonomy), general patterns in the organization of ecological systems and assemblages, and the processes that underlie them. In particular, GEB welcomes studies that use macroecological methods, comparative analyses, meta-analyses, reviews, spatial analyses and modelling to arrive at general, conceptual conclusions. Studies in GEB need not be global in spatial extent, but the conclusions and implications of the study must be relevant to ecologists and biogeographers globally, rather than being limited to local areas, or specific taxa. Similarly, GEB is not limited to spatial studies; we are equally interested in the general patterns of nature through time, among taxa (e.g., body sizes, dispersal abilities), through the course of evolution, etc. Further, GEB welcomes papers that investigate general impacts of human activities on ecological systems in accordance with the above criteria.