Nian Li , Xuehui Wang , Shenghan Jin , Neng Gao , Guangming Chen
{"title":"利用无量纲量热参数建立饱和液体界面特性的准通用模型","authors":"Nian Li , Xuehui Wang , Shenghan Jin , Neng Gao , Guangming Chen","doi":"10.1016/j.fluid.2024.114237","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, the interfacial property of surface tension has been observed to be quasi-universally linked to a dimensionless calorimetric parameter (DCP) for saturated simple liquids. This parameter, derived from thermodynamic calorimetric properties and exclusively influenced by molecular interactions, holds promise for predicting interfacial property and displaying universal behavior. Similar to the excess entropy scaling, empirical evidence indicates linear relations between interfacial properties with the DCP, when appropriate scaling is applied. Based on this observation, formulas for calculating these properties through DCP has been be developed. For fluids with strong molecular interactions, we have also identified their deviations from universality and have proposed a new DCP based modification strategy. These new DCP-based models were evaluated and validated by comparing them with experimental data for 19 pure fluids from different molecular structure catalogues. The average absolute deviations (AADs) were within 2.04 %.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"588 ","pages":"Article 114237"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasi-universally modeling of interfacial properties for saturated liquids using a dimensionless calorimetric parameter\",\"authors\":\"Nian Li , Xuehui Wang , Shenghan Jin , Neng Gao , Guangming Chen\",\"doi\":\"10.1016/j.fluid.2024.114237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, the interfacial property of surface tension has been observed to be quasi-universally linked to a dimensionless calorimetric parameter (DCP) for saturated simple liquids. This parameter, derived from thermodynamic calorimetric properties and exclusively influenced by molecular interactions, holds promise for predicting interfacial property and displaying universal behavior. Similar to the excess entropy scaling, empirical evidence indicates linear relations between interfacial properties with the DCP, when appropriate scaling is applied. Based on this observation, formulas for calculating these properties through DCP has been be developed. For fluids with strong molecular interactions, we have also identified their deviations from universality and have proposed a new DCP based modification strategy. These new DCP-based models were evaluated and validated by comparing them with experimental data for 19 pure fluids from different molecular structure catalogues. The average absolute deviations (AADs) were within 2.04 %.</div></div>\",\"PeriodicalId\":12170,\"journal\":{\"name\":\"Fluid Phase Equilibria\",\"volume\":\"588 \",\"pages\":\"Article 114237\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Phase Equilibria\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378381224002127\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378381224002127","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Quasi-universally modeling of interfacial properties for saturated liquids using a dimensionless calorimetric parameter
In this work, the interfacial property of surface tension has been observed to be quasi-universally linked to a dimensionless calorimetric parameter (DCP) for saturated simple liquids. This parameter, derived from thermodynamic calorimetric properties and exclusively influenced by molecular interactions, holds promise for predicting interfacial property and displaying universal behavior. Similar to the excess entropy scaling, empirical evidence indicates linear relations between interfacial properties with the DCP, when appropriate scaling is applied. Based on this observation, formulas for calculating these properties through DCP has been be developed. For fluids with strong molecular interactions, we have also identified their deviations from universality and have proposed a new DCP based modification strategy. These new DCP-based models were evaluated and validated by comparing them with experimental data for 19 pure fluids from different molecular structure catalogues. The average absolute deviations (AADs) were within 2.04 %.
期刊介绍:
Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results.
Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.