{"title":"弹性基础上的双稳态链","authors":"Yuval Roller, Yamit Geron, Sefi Givli","doi":"10.1016/j.jmps.2024.105873","DOIUrl":null,"url":null,"abstract":"<div><div>Arrays of bistable elements have been studied extensively in the last two decades due to their relevance to a wide range of physical phenomena and engineering applications, from rate-independent hysteresis to multi-stable metamaterials and soft robotics. Here, we study, theoretically and experimentally, an important extension of the bistable-chain model that has been largely overlooked, namely a discrete chain of bistable elements that is supported by a linear-elastic foundation. Focus is put on equilibrium configurations and their stability, from which the sequence of phase-transition events and the overall force-displacement relation are obtained. In addition, we study the influence of each of the bistable parameters and the stiffness of the elastic foundation on the overall behavior. Closed-form analytical expressions are derived by approximating the bistable behavior with a trilinear force-displacement relation. These are later validated numerically and experimentally. Our analysis shows that the sequence of phase transition may involve two fundamentally different scenarios, depending on the system parameters. The first scenario is characterized by the propagation of a single phase boundary associated with an ordered sequence of phase transitions, while the second involves the formation of multiple phase boundaries and a disordered sequence of transition events. Also, by identifying that the displacements of the chain are related through a linear recursive sequence, we show that, in some particular cases, the relevant expressions can be conveniently reduced to formulas associated with the celebrated Lucas or Fibonacci sequences, and the physical interpretation of these solutions is discussed.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"193 ","pages":"Article 105873"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A bistable chain on elastic foundation\",\"authors\":\"Yuval Roller, Yamit Geron, Sefi Givli\",\"doi\":\"10.1016/j.jmps.2024.105873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Arrays of bistable elements have been studied extensively in the last two decades due to their relevance to a wide range of physical phenomena and engineering applications, from rate-independent hysteresis to multi-stable metamaterials and soft robotics. Here, we study, theoretically and experimentally, an important extension of the bistable-chain model that has been largely overlooked, namely a discrete chain of bistable elements that is supported by a linear-elastic foundation. Focus is put on equilibrium configurations and their stability, from which the sequence of phase-transition events and the overall force-displacement relation are obtained. In addition, we study the influence of each of the bistable parameters and the stiffness of the elastic foundation on the overall behavior. Closed-form analytical expressions are derived by approximating the bistable behavior with a trilinear force-displacement relation. These are later validated numerically and experimentally. Our analysis shows that the sequence of phase transition may involve two fundamentally different scenarios, depending on the system parameters. The first scenario is characterized by the propagation of a single phase boundary associated with an ordered sequence of phase transitions, while the second involves the formation of multiple phase boundaries and a disordered sequence of transition events. Also, by identifying that the displacements of the chain are related through a linear recursive sequence, we show that, in some particular cases, the relevant expressions can be conveniently reduced to formulas associated with the celebrated Lucas or Fibonacci sequences, and the physical interpretation of these solutions is discussed.</div></div>\",\"PeriodicalId\":17331,\"journal\":{\"name\":\"Journal of The Mechanics and Physics of Solids\",\"volume\":\"193 \",\"pages\":\"Article 105873\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Mechanics and Physics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022509624003399\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509624003399","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Arrays of bistable elements have been studied extensively in the last two decades due to their relevance to a wide range of physical phenomena and engineering applications, from rate-independent hysteresis to multi-stable metamaterials and soft robotics. Here, we study, theoretically and experimentally, an important extension of the bistable-chain model that has been largely overlooked, namely a discrete chain of bistable elements that is supported by a linear-elastic foundation. Focus is put on equilibrium configurations and their stability, from which the sequence of phase-transition events and the overall force-displacement relation are obtained. In addition, we study the influence of each of the bistable parameters and the stiffness of the elastic foundation on the overall behavior. Closed-form analytical expressions are derived by approximating the bistable behavior with a trilinear force-displacement relation. These are later validated numerically and experimentally. Our analysis shows that the sequence of phase transition may involve two fundamentally different scenarios, depending on the system parameters. The first scenario is characterized by the propagation of a single phase boundary associated with an ordered sequence of phase transitions, while the second involves the formation of multiple phase boundaries and a disordered sequence of transition events. Also, by identifying that the displacements of the chain are related through a linear recursive sequence, we show that, in some particular cases, the relevant expressions can be conveniently reduced to formulas associated with the celebrated Lucas or Fibonacci sequences, and the physical interpretation of these solutions is discussed.
期刊介绍:
The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics.
The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics.
The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.