Yaovi Armand Amouzou-Adoun , Mohamed Jebahi , Samuel Forest , Marc Fivel
{"title":"基于离散位错动力学的应变梯度晶体塑性高阶运动硬化高级建模","authors":"Yaovi Armand Amouzou-Adoun , Mohamed Jebahi , Samuel Forest , Marc Fivel","doi":"10.1016/j.jmps.2024.105875","DOIUrl":null,"url":null,"abstract":"<div><div>An extensive study of size effects on the small-scale behavior of crystalline materials is carried out through discrete dislocation dynamics (DDD) simulations, intended to enrich strain gradient crystal plasticity (SGCP) theories. These simulations include cyclic shearing and tension-compression tests on two-dimensional (2D) constrained crystalline plates, with single- and double-slip systems. The results show significant material strengthening and pronounced kinematic hardening effects. DDD modeling allows for a detailed examination of the physical origin of the strengthening. The stress–strain responses show a two-stage behavior, starting with a micro-plasticity regime with a steep hardening slope leading to strengthening, and followed by a well-established hardening stage. The scaling exponent between the apparent (higher-order) yield stress and the geometrical size <span><math><mi>h</mi></math></span> varies depending on the test type. Scaling relationships of <span><math><msup><mrow><mi>h</mi></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>2</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>h</mi></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>3</mn></mrow></msup></math></span> are obtained for respectively constrained shearing and constrained tension-compression, aligning with some experimental observations. Notably, the DDD simulations reveal the occurrence of the uncommon type III (KIII) kinematic hardening of Asaro in both single- and double-slip cases, emphasizing the relevance of this hardening type in the realm of small-scale plasticity. Inspired by insights from DDD, two advanced SGCP models incorporating alternative descriptions of higher-order kinematic hardening mechanisms are proposed. The first model uses a Prager-type higher-order kinematic hardening formulation, and the second employs a Chaboche-type (multi-kinematic) formulation. Comparison of these models with DDD simulation results underscores their ability to effectively capture the observed strengthening and hardening effects. The multi-kinematic model, through the use of quadratic and non-quadratic higher-order potentials, shows a notably better qualitative congruence with DDD findings. This represents a significant step towards accurate modeling of small-scale material behaviors. However, it is noted that the proposed models still have limitations, especially in matching the DDD scaling exponents, with both models producing <span><math><msup><mrow><mi>h</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> scaling relationships (<em>i.e.,</em> Orowan relationship for precipitate size effects). This indicates the need for further improvements in gradient-enhanced theories in order to guarantee their suitability for practical engineering applications.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"193 ","pages":"Article 105875"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced modeling of higher-order kinematic hardening in strain gradient crystal plasticity based on discrete dislocation dynamics\",\"authors\":\"Yaovi Armand Amouzou-Adoun , Mohamed Jebahi , Samuel Forest , Marc Fivel\",\"doi\":\"10.1016/j.jmps.2024.105875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An extensive study of size effects on the small-scale behavior of crystalline materials is carried out through discrete dislocation dynamics (DDD) simulations, intended to enrich strain gradient crystal plasticity (SGCP) theories. These simulations include cyclic shearing and tension-compression tests on two-dimensional (2D) constrained crystalline plates, with single- and double-slip systems. The results show significant material strengthening and pronounced kinematic hardening effects. DDD modeling allows for a detailed examination of the physical origin of the strengthening. The stress–strain responses show a two-stage behavior, starting with a micro-plasticity regime with a steep hardening slope leading to strengthening, and followed by a well-established hardening stage. The scaling exponent between the apparent (higher-order) yield stress and the geometrical size <span><math><mi>h</mi></math></span> varies depending on the test type. Scaling relationships of <span><math><msup><mrow><mi>h</mi></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>2</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>h</mi></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>3</mn></mrow></msup></math></span> are obtained for respectively constrained shearing and constrained tension-compression, aligning with some experimental observations. Notably, the DDD simulations reveal the occurrence of the uncommon type III (KIII) kinematic hardening of Asaro in both single- and double-slip cases, emphasizing the relevance of this hardening type in the realm of small-scale plasticity. Inspired by insights from DDD, two advanced SGCP models incorporating alternative descriptions of higher-order kinematic hardening mechanisms are proposed. The first model uses a Prager-type higher-order kinematic hardening formulation, and the second employs a Chaboche-type (multi-kinematic) formulation. Comparison of these models with DDD simulation results underscores their ability to effectively capture the observed strengthening and hardening effects. The multi-kinematic model, through the use of quadratic and non-quadratic higher-order potentials, shows a notably better qualitative congruence with DDD findings. This represents a significant step towards accurate modeling of small-scale material behaviors. However, it is noted that the proposed models still have limitations, especially in matching the DDD scaling exponents, with both models producing <span><math><msup><mrow><mi>h</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> scaling relationships (<em>i.e.,</em> Orowan relationship for precipitate size effects). This indicates the need for further improvements in gradient-enhanced theories in order to guarantee their suitability for practical engineering applications.</div></div>\",\"PeriodicalId\":17331,\"journal\":{\"name\":\"Journal of The Mechanics and Physics of Solids\",\"volume\":\"193 \",\"pages\":\"Article 105875\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Mechanics and Physics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022509624003417\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509624003417","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Advanced modeling of higher-order kinematic hardening in strain gradient crystal plasticity based on discrete dislocation dynamics
An extensive study of size effects on the small-scale behavior of crystalline materials is carried out through discrete dislocation dynamics (DDD) simulations, intended to enrich strain gradient crystal plasticity (SGCP) theories. These simulations include cyclic shearing and tension-compression tests on two-dimensional (2D) constrained crystalline plates, with single- and double-slip systems. The results show significant material strengthening and pronounced kinematic hardening effects. DDD modeling allows for a detailed examination of the physical origin of the strengthening. The stress–strain responses show a two-stage behavior, starting with a micro-plasticity regime with a steep hardening slope leading to strengthening, and followed by a well-established hardening stage. The scaling exponent between the apparent (higher-order) yield stress and the geometrical size varies depending on the test type. Scaling relationships of and are obtained for respectively constrained shearing and constrained tension-compression, aligning with some experimental observations. Notably, the DDD simulations reveal the occurrence of the uncommon type III (KIII) kinematic hardening of Asaro in both single- and double-slip cases, emphasizing the relevance of this hardening type in the realm of small-scale plasticity. Inspired by insights from DDD, two advanced SGCP models incorporating alternative descriptions of higher-order kinematic hardening mechanisms are proposed. The first model uses a Prager-type higher-order kinematic hardening formulation, and the second employs a Chaboche-type (multi-kinematic) formulation. Comparison of these models with DDD simulation results underscores their ability to effectively capture the observed strengthening and hardening effects. The multi-kinematic model, through the use of quadratic and non-quadratic higher-order potentials, shows a notably better qualitative congruence with DDD findings. This represents a significant step towards accurate modeling of small-scale material behaviors. However, it is noted that the proposed models still have limitations, especially in matching the DDD scaling exponents, with both models producing scaling relationships (i.e., Orowan relationship for precipitate size effects). This indicates the need for further improvements in gradient-enhanced theories in order to guarantee their suitability for practical engineering applications.
期刊介绍:
The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics.
The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics.
The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.