作为阴极材料的钼:为微生物电解池可持续生物制氢铺平道路

IF 6.9 2区 环境科学与生态学 Q1 ENGINEERING, CHEMICAL Process Safety and Environmental Protection Pub Date : 2024-09-14 DOI:10.1016/j.psep.2024.09.032
{"title":"作为阴极材料的钼:为微生物电解池可持续生物制氢铺平道路","authors":"","doi":"10.1016/j.psep.2024.09.032","DOIUrl":null,"url":null,"abstract":"<div><div>Microbial electrolysis cells (MECs) have garnered significant attention for their potential in sustainable hydrogen production and wastewater treatment. Due to their unique electrochemical properties, molybdenum-based compounds have emerged as promising candidates among various cathode materials. This review explores the multifaceted role of molybdenum in MECs, focusing on its catalytic performance, synthesis strategies, and potential for enhancing H<sub>2</sub> evolution reactions. Various molybdenum-based materials, including molybdenum disulfide (MoS<sub>2</sub>), molybdenum phosphide (MoP), molybdenum carbide (Mo<sub>2</sub>C), and nickel-molybdenum alloys (NiMo), are discussed in terms of their synthesis methods, electrochemical performance, and scalability. Notably, molybdenum-based electrodes have demonstrated comparable or superior catalytic activity to traditional platinum-based cathodes, highlighting their potential as cost-effective alternatives. Future directions in this field include further optimization of synthesis methods, exploration of new molybdenum-based cathodes, mechanistic understanding of catalytic activity, and addressing scalability and stability challenges. Overall, molybdenum-based materials present promising opportunities for advancing MECs technology, driving progress toward sustainable hydrogen production and wastewater treatment.</div></div>","PeriodicalId":20743,"journal":{"name":"Process Safety and Environmental Protection","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molybdenum as cathode materials: Paving the way for sustainable biohydrogen production in microbial electrolysis cells\",\"authors\":\"\",\"doi\":\"10.1016/j.psep.2024.09.032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Microbial electrolysis cells (MECs) have garnered significant attention for their potential in sustainable hydrogen production and wastewater treatment. Due to their unique electrochemical properties, molybdenum-based compounds have emerged as promising candidates among various cathode materials. This review explores the multifaceted role of molybdenum in MECs, focusing on its catalytic performance, synthesis strategies, and potential for enhancing H<sub>2</sub> evolution reactions. Various molybdenum-based materials, including molybdenum disulfide (MoS<sub>2</sub>), molybdenum phosphide (MoP), molybdenum carbide (Mo<sub>2</sub>C), and nickel-molybdenum alloys (NiMo), are discussed in terms of their synthesis methods, electrochemical performance, and scalability. Notably, molybdenum-based electrodes have demonstrated comparable or superior catalytic activity to traditional platinum-based cathodes, highlighting their potential as cost-effective alternatives. Future directions in this field include further optimization of synthesis methods, exploration of new molybdenum-based cathodes, mechanistic understanding of catalytic activity, and addressing scalability and stability challenges. Overall, molybdenum-based materials present promising opportunities for advancing MECs technology, driving progress toward sustainable hydrogen production and wastewater treatment.</div></div>\",\"PeriodicalId\":20743,\"journal\":{\"name\":\"Process Safety and Environmental Protection\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Process Safety and Environmental Protection\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957582024011571\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety and Environmental Protection","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957582024011571","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

微生物电解池(MECs)因其在可持续制氢和废水处理方面的潜力而备受关注。由于其独特的电化学特性,钼基化合物已成为各种阴极材料中颇具前景的候选材料。本综述探讨了钼在 MECs 中的多方面作用,重点关注其催化性能、合成策略以及增强 H2 演化反应的潜力。文章从合成方法、电化学性能和可扩展性等方面讨论了各种钼基材料,包括二硫化钼 (MoS2)、磷化钼 (MoP)、碳化钼 (Mo2C) 和镍钼合金 (NiMo)。值得注意的是,钼基电极的催化活性已与传统的铂基阴极相当或更优,凸显了其作为具有成本效益的替代品的潜力。该领域未来的发展方向包括进一步优化合成方法、探索新型钼基阴极、从机理上理解催化活性,以及解决可扩展性和稳定性方面的挑战。总之,钼基材料为推进 MECs 技术、推动可持续制氢和废水处理的发展提供了大好机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molybdenum as cathode materials: Paving the way for sustainable biohydrogen production in microbial electrolysis cells
Microbial electrolysis cells (MECs) have garnered significant attention for their potential in sustainable hydrogen production and wastewater treatment. Due to their unique electrochemical properties, molybdenum-based compounds have emerged as promising candidates among various cathode materials. This review explores the multifaceted role of molybdenum in MECs, focusing on its catalytic performance, synthesis strategies, and potential for enhancing H2 evolution reactions. Various molybdenum-based materials, including molybdenum disulfide (MoS2), molybdenum phosphide (MoP), molybdenum carbide (Mo2C), and nickel-molybdenum alloys (NiMo), are discussed in terms of their synthesis methods, electrochemical performance, and scalability. Notably, molybdenum-based electrodes have demonstrated comparable or superior catalytic activity to traditional platinum-based cathodes, highlighting their potential as cost-effective alternatives. Future directions in this field include further optimization of synthesis methods, exploration of new molybdenum-based cathodes, mechanistic understanding of catalytic activity, and addressing scalability and stability challenges. Overall, molybdenum-based materials present promising opportunities for advancing MECs technology, driving progress toward sustainable hydrogen production and wastewater treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Process Safety and Environmental Protection
Process Safety and Environmental Protection 环境科学-工程:化工
CiteScore
11.40
自引率
15.40%
发文量
929
审稿时长
8.0 months
期刊介绍: The Process Safety and Environmental Protection (PSEP) journal is a leading international publication that focuses on the publication of high-quality, original research papers in the field of engineering, specifically those related to the safety of industrial processes and environmental protection. The journal encourages submissions that present new developments in safety and environmental aspects, particularly those that show how research findings can be applied in process engineering design and practice. PSEP is particularly interested in research that brings fresh perspectives to established engineering principles, identifies unsolved problems, or suggests directions for future research. The journal also values contributions that push the boundaries of traditional engineering and welcomes multidisciplinary papers. PSEP's articles are abstracted and indexed by a range of databases and services, which helps to ensure that the journal's research is accessible and recognized in the academic and professional communities. These databases include ANTE, Chemical Abstracts, Chemical Hazards in Industry, Current Contents, Elsevier Engineering Information database, Pascal Francis, Web of Science, Scopus, Engineering Information Database EnCompass LIT (Elsevier), and INSPEC. This wide coverage facilitates the dissemination of the journal's content to a global audience interested in process safety and environmental engineering.
期刊最新文献
An avalanche transistor-based Marx circuit pulse generator with sub-nanosecond, high frequency and high-voltage for pathogenic Escherichia coli ablation Fabrication of heterogeneous catalyst for production of biodiesel form municipal sludge Soil utilization analysis of synergistic pyrolysis products of flue gas desulfurization gypsum and biomass Dispersion and explosion characteristics of multi-phase fuel with different charge structure Optimizing multivariate alarm systems: A study on joint false alarm rate, and joint missed alarm rate using linear programming technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1