Aswani Kumar Bandaru , Jayaram R. Pothnis , Alexandre Portela , Raghavendra Gujjala , Hong Ma , Ronan M. O'Higgins
{"title":"用高性能纤维增强的新型甲基丙烯酸甲酯复合材料的挠曲和层间剪切响应","authors":"Aswani Kumar Bandaru , Jayaram R. Pothnis , Alexandre Portela , Raghavendra Gujjala , Hong Ma , Ronan M. O'Higgins","doi":"10.1016/j.polymertesting.2024.108578","DOIUrl":null,"url":null,"abstract":"<div><div>This experimental work presents a comparative study on the mechanical behaviour of novel infusible methylmethacrylate matrix (Elium®) composites reinforced with different types of high-performance fibres. A vacuum-assisted resin infusion process was employed to fabricate the laminates using carbon, basalt, Kevlar®, and high molecular weight polyethene (UHMWPE) fibres. Flexural and interlaminar shear properties of the composites were evaluated. Test results revealed that carbon fibre composites had superior flexural strength, stiffness and interlaminar shear stress as compared to the other composites tested. Further, composites containing Kevlar and UHMWPE fibres demonstrated significantly higher flexural strains to failure. Post-testing, specimens were examined using scanning electron microscopy (SEM). Microscopy revealed possible interfacial interaction differences based on the reinforcement fibre type, which was further confirmed by an analytical approach for analysing the flexural behaviour of various types of composites. The sequence of damage progression in specimens was also analysed.</div></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"140 ","pages":"Article 108578"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0142941824002551/pdfft?md5=d4b69dde211987c5817c2f98b755365f&pid=1-s2.0-S0142941824002551-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Flexural and interlaminar shear response of novel methylmethacrylate composites reinforced with high-performance fibres\",\"authors\":\"Aswani Kumar Bandaru , Jayaram R. Pothnis , Alexandre Portela , Raghavendra Gujjala , Hong Ma , Ronan M. O'Higgins\",\"doi\":\"10.1016/j.polymertesting.2024.108578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This experimental work presents a comparative study on the mechanical behaviour of novel infusible methylmethacrylate matrix (Elium®) composites reinforced with different types of high-performance fibres. A vacuum-assisted resin infusion process was employed to fabricate the laminates using carbon, basalt, Kevlar®, and high molecular weight polyethene (UHMWPE) fibres. Flexural and interlaminar shear properties of the composites were evaluated. Test results revealed that carbon fibre composites had superior flexural strength, stiffness and interlaminar shear stress as compared to the other composites tested. Further, composites containing Kevlar and UHMWPE fibres demonstrated significantly higher flexural strains to failure. Post-testing, specimens were examined using scanning electron microscopy (SEM). Microscopy revealed possible interfacial interaction differences based on the reinforcement fibre type, which was further confirmed by an analytical approach for analysing the flexural behaviour of various types of composites. The sequence of damage progression in specimens was also analysed.</div></div>\",\"PeriodicalId\":20628,\"journal\":{\"name\":\"Polymer Testing\",\"volume\":\"140 \",\"pages\":\"Article 108578\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0142941824002551/pdfft?md5=d4b69dde211987c5817c2f98b755365f&pid=1-s2.0-S0142941824002551-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Testing\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142941824002551\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142941824002551","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Flexural and interlaminar shear response of novel methylmethacrylate composites reinforced with high-performance fibres
This experimental work presents a comparative study on the mechanical behaviour of novel infusible methylmethacrylate matrix (Elium®) composites reinforced with different types of high-performance fibres. A vacuum-assisted resin infusion process was employed to fabricate the laminates using carbon, basalt, Kevlar®, and high molecular weight polyethene (UHMWPE) fibres. Flexural and interlaminar shear properties of the composites were evaluated. Test results revealed that carbon fibre composites had superior flexural strength, stiffness and interlaminar shear stress as compared to the other composites tested. Further, composites containing Kevlar and UHMWPE fibres demonstrated significantly higher flexural strains to failure. Post-testing, specimens were examined using scanning electron microscopy (SEM). Microscopy revealed possible interfacial interaction differences based on the reinforcement fibre type, which was further confirmed by an analytical approach for analysing the flexural behaviour of various types of composites. The sequence of damage progression in specimens was also analysed.
期刊介绍:
Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization.
The scope includes but is not limited to the following main topics:
Novel testing methods and Chemical analysis
• mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology
Physical properties and behaviour of novel polymer systems
• nanoscale properties, morphology, transport properties
Degradation and recycling of polymeric materials when combined with novel testing or characterization methods
• degradation, biodegradation, ageing and fire retardancy
Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.