Lu Liu , Wenchao Zhang , Weiqiang Xiong , Peijin Liu , Guoqiang He , Wen Ao
{"title":"不同锂含量下的铝锂粒子点火动力学研究","authors":"Lu Liu , Wenchao Zhang , Weiqiang Xiong , Peijin Liu , Guoqiang He , Wen Ao","doi":"10.1016/j.combustflame.2024.113734","DOIUrl":null,"url":null,"abstract":"<div><div>Promoting the ignition of aluminum powder is considered an effective method to inhibit the agglomeration of aluminum powder in propellants and enhance combustion efficiency. This study utilizes laser ignition technology and high-speed photography to investigate the ignition and combustion processes of single aluminum particles and aluminum-lithium alloy particles. The focus is on comparing the effects of the diameter of micron-sized metal particles and the lithium content in aluminum-lithium alloy particles on the ignition and combustion processes of metal particles. The results show that the ignition delay time is directly proportional to the diameter of the metal particles and inversely proportional to the lithium content. For the aluminum-lithium alloy particle with a lithium content of 3.5 %, even if the diameter is close to 300 μm, the ignition delay time is only 125.5 ms, which is much smaller than that of the pure aluminum particle with a diameter of 208 μm. Compared to aluminum particles and aluminum-lithium alloy particles, there is basically no difference between the two during the combustion stage. However, in the ignition stage, aluminum-lithium alloy particles sequentially exhibit a red gas-phase flame corresponding to lithium and a yellow gas-phase flame corresponding to aluminum. This indicates that during the ignition process of aluminum-lithium alloy particles, lithium first reacts with the oxidative atmosphere and releases heat, providing a heat source for the subsequent ignition of aluminum particles. This also explains why the ignition delay time of metal particles is inversely proportional to the lithium content. An ignition model for aluminum particles in a multi-component atmosphere is established, which further considers the chemical reactions between lithium and oxidative gases, making the model applicable to aluminum-lithium alloy particles. This ignition model effectively describes the impact of particle diameter and lithium content on the ignition process of metal particles. The model is further verified, and the results show that the calculated ignition delay is in good agreement with the experimental data. Overall, this study provides deeper experimental and theoretical insights into the ignition and combustion processes of aluminum-lithium alloys, and the findings can guide the application of aluminum-lithium alloys in propellants.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"270 ","pages":"Article 113734"},"PeriodicalIF":5.8000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Al-Li particle ignition dynamics with different Li content\",\"authors\":\"Lu Liu , Wenchao Zhang , Weiqiang Xiong , Peijin Liu , Guoqiang He , Wen Ao\",\"doi\":\"10.1016/j.combustflame.2024.113734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Promoting the ignition of aluminum powder is considered an effective method to inhibit the agglomeration of aluminum powder in propellants and enhance combustion efficiency. This study utilizes laser ignition technology and high-speed photography to investigate the ignition and combustion processes of single aluminum particles and aluminum-lithium alloy particles. The focus is on comparing the effects of the diameter of micron-sized metal particles and the lithium content in aluminum-lithium alloy particles on the ignition and combustion processes of metal particles. The results show that the ignition delay time is directly proportional to the diameter of the metal particles and inversely proportional to the lithium content. For the aluminum-lithium alloy particle with a lithium content of 3.5 %, even if the diameter is close to 300 μm, the ignition delay time is only 125.5 ms, which is much smaller than that of the pure aluminum particle with a diameter of 208 μm. Compared to aluminum particles and aluminum-lithium alloy particles, there is basically no difference between the two during the combustion stage. However, in the ignition stage, aluminum-lithium alloy particles sequentially exhibit a red gas-phase flame corresponding to lithium and a yellow gas-phase flame corresponding to aluminum. This indicates that during the ignition process of aluminum-lithium alloy particles, lithium first reacts with the oxidative atmosphere and releases heat, providing a heat source for the subsequent ignition of aluminum particles. This also explains why the ignition delay time of metal particles is inversely proportional to the lithium content. An ignition model for aluminum particles in a multi-component atmosphere is established, which further considers the chemical reactions between lithium and oxidative gases, making the model applicable to aluminum-lithium alloy particles. This ignition model effectively describes the impact of particle diameter and lithium content on the ignition process of metal particles. The model is further verified, and the results show that the calculated ignition delay is in good agreement with the experimental data. Overall, this study provides deeper experimental and theoretical insights into the ignition and combustion processes of aluminum-lithium alloys, and the findings can guide the application of aluminum-lithium alloys in propellants.</div></div>\",\"PeriodicalId\":280,\"journal\":{\"name\":\"Combustion and Flame\",\"volume\":\"270 \",\"pages\":\"Article 113734\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combustion and Flame\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010218024004437\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218024004437","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Investigation of Al-Li particle ignition dynamics with different Li content
Promoting the ignition of aluminum powder is considered an effective method to inhibit the agglomeration of aluminum powder in propellants and enhance combustion efficiency. This study utilizes laser ignition technology and high-speed photography to investigate the ignition and combustion processes of single aluminum particles and aluminum-lithium alloy particles. The focus is on comparing the effects of the diameter of micron-sized metal particles and the lithium content in aluminum-lithium alloy particles on the ignition and combustion processes of metal particles. The results show that the ignition delay time is directly proportional to the diameter of the metal particles and inversely proportional to the lithium content. For the aluminum-lithium alloy particle with a lithium content of 3.5 %, even if the diameter is close to 300 μm, the ignition delay time is only 125.5 ms, which is much smaller than that of the pure aluminum particle with a diameter of 208 μm. Compared to aluminum particles and aluminum-lithium alloy particles, there is basically no difference between the two during the combustion stage. However, in the ignition stage, aluminum-lithium alloy particles sequentially exhibit a red gas-phase flame corresponding to lithium and a yellow gas-phase flame corresponding to aluminum. This indicates that during the ignition process of aluminum-lithium alloy particles, lithium first reacts with the oxidative atmosphere and releases heat, providing a heat source for the subsequent ignition of aluminum particles. This also explains why the ignition delay time of metal particles is inversely proportional to the lithium content. An ignition model for aluminum particles in a multi-component atmosphere is established, which further considers the chemical reactions between lithium and oxidative gases, making the model applicable to aluminum-lithium alloy particles. This ignition model effectively describes the impact of particle diameter and lithium content on the ignition process of metal particles. The model is further verified, and the results show that the calculated ignition delay is in good agreement with the experimental data. Overall, this study provides deeper experimental and theoretical insights into the ignition and combustion processes of aluminum-lithium alloys, and the findings can guide the application of aluminum-lithium alloys in propellants.
期刊介绍:
The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on:
Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including:
Conventional, alternative and surrogate fuels;
Pollutants;
Particulate and aerosol formation and abatement;
Heterogeneous processes.
Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including:
Premixed and non-premixed flames;
Ignition and extinction phenomena;
Flame propagation;
Flame structure;
Instabilities and swirl;
Flame spread;
Multi-phase reactants.
Advances in diagnostic and computational methods in combustion, including:
Measurement and simulation of scalar and vector properties;
Novel techniques;
State-of-the art applications.
Fundamental investigations of combustion technologies and systems, including:
Internal combustion engines;
Gas turbines;
Small- and large-scale stationary combustion and power generation;
Catalytic combustion;
Combustion synthesis;
Combustion under extreme conditions;
New concepts.