Jianxun Li , Xu Liu , Zihan Hu , Yuehua Liu , Hongfei Li , Limin Zhou
{"title":"用聚合物粘合剂增强可膨胀碳纤维结构锂离子电池复合材料的界面","authors":"Jianxun Li , Xu Liu , Zihan Hu , Yuehua Liu , Hongfei Li , Limin Zhou","doi":"10.1016/j.compscitech.2024.110873","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon fiber (CF) composite structural battery (SB) is a novel energy storage device that integrates electrochemical energy storage with mechanical load-bearing capability. Carbon fiber's inherent conjugated carbon network possesses excellent electronic conductivity, thus serving as a current collector for electrode active materials. The bonding between active materials and carbon fibers relies on their manufacturing processes, requiring optimization of their electrochemical performance and addressing the challenges of large-scale production. In this work, a LiFePO<sub>4</sub>/PEO-LiTFSI/CF composite cathode was fabricated using the direct coating method. Polyethylene oxide (PEO) acted as a binder to form a stable LiFePO<sub>4</sub> (LFP) coating on the carbon fiber woven fabric, while multi-walled carbon nanotube (MWCNT) were employed to construct a conductive network. This significantly enhanced both the charge-discharge performance and interface stability of the composite cathode. This composite cathode achieved a first-cycle discharge-specific capacity of 133.21 mAh·g<sup>−1</sup> at 0.1 C rate and retained 93.7 % of its capacity after 200 cycles at 1 C rate. Based on this composite cathode, multiple active material coatings were integrated onto a carbon fiber woven fabric to manufacture an expandable multi-cell structural battery. Its advantage lies in the ability of multiple battery cells to disperse stress under load, thus achieving a higher capacity retention rate under bending loads. The structural battery possesses a high degree of customizability, allowing for adjustment of the area, position, and quantity of active material coatings to meet the demands of practical conditions.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"258 ","pages":"Article 110873"},"PeriodicalIF":8.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interface reinforced by polymer binder for expandable carbon fiber structural lithium-ion battery composites\",\"authors\":\"Jianxun Li , Xu Liu , Zihan Hu , Yuehua Liu , Hongfei Li , Limin Zhou\",\"doi\":\"10.1016/j.compscitech.2024.110873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Carbon fiber (CF) composite structural battery (SB) is a novel energy storage device that integrates electrochemical energy storage with mechanical load-bearing capability. Carbon fiber's inherent conjugated carbon network possesses excellent electronic conductivity, thus serving as a current collector for electrode active materials. The bonding between active materials and carbon fibers relies on their manufacturing processes, requiring optimization of their electrochemical performance and addressing the challenges of large-scale production. In this work, a LiFePO<sub>4</sub>/PEO-LiTFSI/CF composite cathode was fabricated using the direct coating method. Polyethylene oxide (PEO) acted as a binder to form a stable LiFePO<sub>4</sub> (LFP) coating on the carbon fiber woven fabric, while multi-walled carbon nanotube (MWCNT) were employed to construct a conductive network. This significantly enhanced both the charge-discharge performance and interface stability of the composite cathode. This composite cathode achieved a first-cycle discharge-specific capacity of 133.21 mAh·g<sup>−1</sup> at 0.1 C rate and retained 93.7 % of its capacity after 200 cycles at 1 C rate. Based on this composite cathode, multiple active material coatings were integrated onto a carbon fiber woven fabric to manufacture an expandable multi-cell structural battery. Its advantage lies in the ability of multiple battery cells to disperse stress under load, thus achieving a higher capacity retention rate under bending loads. The structural battery possesses a high degree of customizability, allowing for adjustment of the area, position, and quantity of active material coatings to meet the demands of practical conditions.</div></div>\",\"PeriodicalId\":283,\"journal\":{\"name\":\"Composites Science and Technology\",\"volume\":\"258 \",\"pages\":\"Article 110873\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266353824004433\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353824004433","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Interface reinforced by polymer binder for expandable carbon fiber structural lithium-ion battery composites
Carbon fiber (CF) composite structural battery (SB) is a novel energy storage device that integrates electrochemical energy storage with mechanical load-bearing capability. Carbon fiber's inherent conjugated carbon network possesses excellent electronic conductivity, thus serving as a current collector for electrode active materials. The bonding between active materials and carbon fibers relies on their manufacturing processes, requiring optimization of their electrochemical performance and addressing the challenges of large-scale production. In this work, a LiFePO4/PEO-LiTFSI/CF composite cathode was fabricated using the direct coating method. Polyethylene oxide (PEO) acted as a binder to form a stable LiFePO4 (LFP) coating on the carbon fiber woven fabric, while multi-walled carbon nanotube (MWCNT) were employed to construct a conductive network. This significantly enhanced both the charge-discharge performance and interface stability of the composite cathode. This composite cathode achieved a first-cycle discharge-specific capacity of 133.21 mAh·g−1 at 0.1 C rate and retained 93.7 % of its capacity after 200 cycles at 1 C rate. Based on this composite cathode, multiple active material coatings were integrated onto a carbon fiber woven fabric to manufacture an expandable multi-cell structural battery. Its advantage lies in the ability of multiple battery cells to disperse stress under load, thus achieving a higher capacity retention rate under bending loads. The structural battery possesses a high degree of customizability, allowing for adjustment of the area, position, and quantity of active material coatings to meet the demands of practical conditions.
期刊介绍:
Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites.
Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.