Emmanuel Bernard , Rebecca L. Cordell , Robert S. Blake , Michael J. Wilde , Paul S. Monks
{"title":"2020 年 COVID-19 封锁对英国城市大气中非甲烷挥发性有机化合物浓度的影响","authors":"Emmanuel Bernard , Rebecca L. Cordell , Robert S. Blake , Michael J. Wilde , Paul S. Monks","doi":"10.1016/j.atmosenv.2024.120836","DOIUrl":null,"url":null,"abstract":"<div><div>The changes in air quality brought about by the COVID-19 lockdowns can provide valuable insight into how longer-term reductions in emissions might affect atmospheric composition. In urban Leicester UK, the 2020 COVID “lockdown” brought about several notable changes in atmospheric composition, including a considerable decrease (20–60%) in concentrations of non-methane volatile organic compounds (NMVOCs). Given their varied emission sources and lifetimes, NMVOC data can give valuable insights into how behavioural change impact atmospheric composition. The total concentration of 48 NMVOCs at roadside (RS) sites decreased from a pre-lockdown (sampled 16th-24th March 2020) concentration of 181.3 ± 41.4 μg/m<sup>3</sup> to 82.0 ± 12.8 μg/m<sup>3</sup> during lockdown (LD, sampled 18th-21st May 2020), before rebounding to a concentration of 236.3 ± 23.9 μg/m<sup>3</sup> post lockdown (post-LD, sampled 14th-17th Sept 2020). A similar pattern was observed at urban background (UB) sites with concentrations reducing during lockdown to 96.8 ± 39.5 μg/m<sup>3</sup> from a pre-lockdown (pre-LD) concentration of 123.2 ± 24.6 μg/m<sup>3</sup> and then increasing to 168.6 ± 29.1 μg/m<sup>3</sup> post-LD.</div><div>Generally, despite the decrease in NMVOC concentrations during the LD, an increase in <span><math><mrow><msub><mi>O</mi><mn>3</mn></msub></mrow></math></span> level was observed. This was attributed to decreased emissions of <span><math><msub><mtext>NO</mtext><mi>x</mi></msub></math></span> and the subsequent repartioning of O<sub>x</sub>. This research assessed the quantitative effect of changes in vehicular and related anthropogenic emissions on air quality, providing valuable insights for the formulation of future air pollution controls.</div></div>","PeriodicalId":250,"journal":{"name":"Atmospheric Environment","volume":"338 ","pages":"Article 120836"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1352231024005119/pdfft?md5=cf6a6f83dd3cbf38f5a0ec4177ea61ea&pid=1-s2.0-S1352231024005119-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Impact of the 2020 COVID-19 lockdown on the concentration of non-methane volatile organic compounds in a UK urban atmosphere\",\"authors\":\"Emmanuel Bernard , Rebecca L. Cordell , Robert S. Blake , Michael J. Wilde , Paul S. Monks\",\"doi\":\"10.1016/j.atmosenv.2024.120836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The changes in air quality brought about by the COVID-19 lockdowns can provide valuable insight into how longer-term reductions in emissions might affect atmospheric composition. In urban Leicester UK, the 2020 COVID “lockdown” brought about several notable changes in atmospheric composition, including a considerable decrease (20–60%) in concentrations of non-methane volatile organic compounds (NMVOCs). Given their varied emission sources and lifetimes, NMVOC data can give valuable insights into how behavioural change impact atmospheric composition. The total concentration of 48 NMVOCs at roadside (RS) sites decreased from a pre-lockdown (sampled 16th-24th March 2020) concentration of 181.3 ± 41.4 μg/m<sup>3</sup> to 82.0 ± 12.8 μg/m<sup>3</sup> during lockdown (LD, sampled 18th-21st May 2020), before rebounding to a concentration of 236.3 ± 23.9 μg/m<sup>3</sup> post lockdown (post-LD, sampled 14th-17th Sept 2020). A similar pattern was observed at urban background (UB) sites with concentrations reducing during lockdown to 96.8 ± 39.5 μg/m<sup>3</sup> from a pre-lockdown (pre-LD) concentration of 123.2 ± 24.6 μg/m<sup>3</sup> and then increasing to 168.6 ± 29.1 μg/m<sup>3</sup> post-LD.</div><div>Generally, despite the decrease in NMVOC concentrations during the LD, an increase in <span><math><mrow><msub><mi>O</mi><mn>3</mn></msub></mrow></math></span> level was observed. This was attributed to decreased emissions of <span><math><msub><mtext>NO</mtext><mi>x</mi></msub></math></span> and the subsequent repartioning of O<sub>x</sub>. This research assessed the quantitative effect of changes in vehicular and related anthropogenic emissions on air quality, providing valuable insights for the formulation of future air pollution controls.</div></div>\",\"PeriodicalId\":250,\"journal\":{\"name\":\"Atmospheric Environment\",\"volume\":\"338 \",\"pages\":\"Article 120836\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1352231024005119/pdfft?md5=cf6a6f83dd3cbf38f5a0ec4177ea61ea&pid=1-s2.0-S1352231024005119-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1352231024005119\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1352231024005119","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Impact of the 2020 COVID-19 lockdown on the concentration of non-methane volatile organic compounds in a UK urban atmosphere
The changes in air quality brought about by the COVID-19 lockdowns can provide valuable insight into how longer-term reductions in emissions might affect atmospheric composition. In urban Leicester UK, the 2020 COVID “lockdown” brought about several notable changes in atmospheric composition, including a considerable decrease (20–60%) in concentrations of non-methane volatile organic compounds (NMVOCs). Given their varied emission sources and lifetimes, NMVOC data can give valuable insights into how behavioural change impact atmospheric composition. The total concentration of 48 NMVOCs at roadside (RS) sites decreased from a pre-lockdown (sampled 16th-24th March 2020) concentration of 181.3 ± 41.4 μg/m3 to 82.0 ± 12.8 μg/m3 during lockdown (LD, sampled 18th-21st May 2020), before rebounding to a concentration of 236.3 ± 23.9 μg/m3 post lockdown (post-LD, sampled 14th-17th Sept 2020). A similar pattern was observed at urban background (UB) sites with concentrations reducing during lockdown to 96.8 ± 39.5 μg/m3 from a pre-lockdown (pre-LD) concentration of 123.2 ± 24.6 μg/m3 and then increasing to 168.6 ± 29.1 μg/m3 post-LD.
Generally, despite the decrease in NMVOC concentrations during the LD, an increase in level was observed. This was attributed to decreased emissions of and the subsequent repartioning of Ox. This research assessed the quantitative effect of changes in vehicular and related anthropogenic emissions on air quality, providing valuable insights for the formulation of future air pollution controls.
期刊介绍:
Atmospheric Environment has an open access mirror journal Atmospheric Environment: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Atmospheric Environment is the international journal for scientists in different disciplines related to atmospheric composition and its impacts. The journal publishes scientific articles with atmospheric relevance of emissions and depositions of gaseous and particulate compounds, chemical processes and physical effects in the atmosphere, as well as impacts of the changing atmospheric composition on human health, air quality, climate change, and ecosystems.