具有更强锌离子存储能力的二维异质结构--源于 MXene 的 V2O5-H2O 和石墨烯

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY Electrochimica Acta Pub Date : 2024-09-21 DOI:10.1016/j.electacta.2024.145093
{"title":"具有更强锌离子存储能力的二维异质结构--源于 MXene 的 V2O5-H2O 和石墨烯","authors":"","doi":"10.1016/j.electacta.2024.145093","DOIUrl":null,"url":null,"abstract":"<div><div>Aqueous rechargeable zinc-ion batteries (ZIBs) are promising candidates for gird-scale energy storage with economic and environmental advantages. Layered hydrated vanadium oxides with multivalent and “lubricating” effect receive much attention in ZIBs. However, the application of them is suffering from the poor intrinsic conductivity and the unstable structure. Herein, a unique 2D/2D heterostructure of δ-V<sub>2</sub>O<sub>5</sub>·H<sub>2</sub>O nanobelts (VO) and reduced graphene oxide (rGO) is designed as cathode for ZIBs (denoted as VOG). The stronger interface coupling and the shorter ion transport pathways impart the VOG electrode impressive stability and fast ions diffusion kinetics. Specifically, the VOG cathode delivers a superior capacity of 342 mAh g<sup>−1</sup> at 1 A g<sup>−1</sup> and a remarkable rate capability of 280 mAh g<sup>−1</sup> at a quite high rate of 10 A g<sup>−1</sup>. The energy storage mechanism involved is investigated by systematical characterizations. The exploration of such 2D/2D heterostructure materials with strong synergy sheds light on the rational design of high performanced AZIBs.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-dimensional heterostructure of MXene-derived V2O5·H2O and graphene with enhanced Zn-ion storage capability\",\"authors\":\"\",\"doi\":\"10.1016/j.electacta.2024.145093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Aqueous rechargeable zinc-ion batteries (ZIBs) are promising candidates for gird-scale energy storage with economic and environmental advantages. Layered hydrated vanadium oxides with multivalent and “lubricating” effect receive much attention in ZIBs. However, the application of them is suffering from the poor intrinsic conductivity and the unstable structure. Herein, a unique 2D/2D heterostructure of δ-V<sub>2</sub>O<sub>5</sub>·H<sub>2</sub>O nanobelts (VO) and reduced graphene oxide (rGO) is designed as cathode for ZIBs (denoted as VOG). The stronger interface coupling and the shorter ion transport pathways impart the VOG electrode impressive stability and fast ions diffusion kinetics. Specifically, the VOG cathode delivers a superior capacity of 342 mAh g<sup>−1</sup> at 1 A g<sup>−1</sup> and a remarkable rate capability of 280 mAh g<sup>−1</sup> at a quite high rate of 10 A g<sup>−1</sup>. The energy storage mechanism involved is investigated by systematical characterizations. The exploration of such 2D/2D heterostructure materials with strong synergy sheds light on the rational design of high performanced AZIBs.</div></div>\",\"PeriodicalId\":305,\"journal\":{\"name\":\"Electrochimica Acta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochimica Acta\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013468624013306\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468624013306","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

水性可充电锌离子电池(ZIBs)是具有经济和环境优势的大规模能源储存的理想选择。具有多价和 "润滑 "效应的层状水合钒氧化物在锌离子电池中备受关注。然而,它们在应用过程中存在着本征导电性差、结构不稳定等问题。在此,我们设计了一种独特的 2D/2D 异质结构:δ-V2O5-H2O 纳米颗粒(VO)和还原氧化石墨烯(rGO),作为 ZIB 的阴极(简称 VOG)。更强的界面耦合和更短的离子传输路径赋予了 VOG 电极令人印象深刻的稳定性和快速离子扩散动力学。具体来说,VOG 阴极在 1 A g-1 的条件下可提供 342 mAh g-1 的超强容量,在 10 A g-1 的相当高的速率条件下可提供 280 mAh g-1 的显著速率能力。我们通过系统表征研究了其中的储能机制。对这种具有强大协同作用的二维/二维异质结构材料的探索,为高性能 AZIB 的合理设计提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Two-dimensional heterostructure of MXene-derived V2O5·H2O and graphene with enhanced Zn-ion storage capability
Aqueous rechargeable zinc-ion batteries (ZIBs) are promising candidates for gird-scale energy storage with economic and environmental advantages. Layered hydrated vanadium oxides with multivalent and “lubricating” effect receive much attention in ZIBs. However, the application of them is suffering from the poor intrinsic conductivity and the unstable structure. Herein, a unique 2D/2D heterostructure of δ-V2O5·H2O nanobelts (VO) and reduced graphene oxide (rGO) is designed as cathode for ZIBs (denoted as VOG). The stronger interface coupling and the shorter ion transport pathways impart the VOG electrode impressive stability and fast ions diffusion kinetics. Specifically, the VOG cathode delivers a superior capacity of 342 mAh g−1 at 1 A g−1 and a remarkable rate capability of 280 mAh g−1 at a quite high rate of 10 A g−1. The energy storage mechanism involved is investigated by systematical characterizations. The exploration of such 2D/2D heterostructure materials with strong synergy sheds light on the rational design of high performanced AZIBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
期刊最新文献
Indium Oxide Decorated Graphitic Carbon Nitride/Multiwalled Carbon Nanotubes Ternary Composite for Supercapacitor Applications Simulating cyclic voltammetry at rough electrodes by the digital-simulation–deconvolution–convolution algorithm V/Cu/Co-mediated oxide/carbonate heterostructural nanoflowers for high-efficient electrocatalytic overall water splitting in alkaline media Impact of Amorphous Structure on CO2 Electrocatalysis with Cu: A Combined Machine Learning Forcefield and DFT Modelling Approach Tailored Functional Monolayers Made from Mesoionic Carbenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1