Jiyun Xiang , Ni Li , Jiaxuan Feng , JinYang Yin , Yanli Wang , Huan Wang , Weiping Wang , Zhiwei Yang
{"title":"内生菌群在减轻具有不同镉积累能力的水稻栽培品种的镉毒性方面表现出不同效果","authors":"Jiyun Xiang , Ni Li , Jiaxuan Feng , JinYang Yin , Yanli Wang , Huan Wang , Weiping Wang , Zhiwei Yang","doi":"10.1016/j.eti.2024.103833","DOIUrl":null,"url":null,"abstract":"<div><div>Cadmium (Cd)-contaminated rice is the main source of Cd exposure that threatens food safety and human health. While plant growth-promoting bacteria (PGPB) have been reported to reduce Cd toxicity in rice, the effect of endophytic consortium is less understood compared to the single strain. Here, we reported that the PGPB consortium consisting of Cd-tolerant endophytic bacteria <em>Pseudomonas</em> sp. 4N2 and <em>Bacillus</em> sp. TB1 increased extracellular polymeric substance secretion and demonstrated a higher Cd removal rate compared to individual 4N2 and TB1. Further, two rice cultivar, namely the low-Cd-accumulating (LA) cultivar 728B and the high-Cd-accumulating (HA) cultivar BB, were inoculated with the 4N2-TB1 consortium. As expected, the consortium had a more pronounced effect on 728B, from which the endophytic bacteria were screened. The 4N2-TB1 consortium was found to facilitate the growth of rice seedlings and enhance their antioxidation activity. Moreover, the consortium significantly reduced Cd transfer coefficient from root to shoot through Cd immobilization in rice roots, resulting in a reduction from 30 % to 6 % in 728B and from 31 % to 13 % in BB. Furthermore, alpha-diversity analysis indicated an increased diversity and richness of the root bacterial community after 4N2-TB1 inoculation. Also, redundancy analysis confirmed a positive correlation between rice biomass and Cd content with a specific assemblage of bacteria including <em>Bacillus</em> and <em>Leifsonia</em>. These results demonstrated that the 4N2-TB1 consortium may alleviate Cd stress in rice cultivars through recruiting PGPB and Cd-binding bacteria on the root surface, thus strengthening the immobilization of Cd in rice roots.</div></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"36 ","pages":"Article 103833"},"PeriodicalIF":6.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352186424003092/pdfft?md5=7bb4f2c1154a04355caa0451e4963957&pid=1-s2.0-S2352186424003092-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Endophytic consortium exhibits varying effects in mitigating cadmium toxicity in rice cultivars with distinct cadmium accumulation capacities\",\"authors\":\"Jiyun Xiang , Ni Li , Jiaxuan Feng , JinYang Yin , Yanli Wang , Huan Wang , Weiping Wang , Zhiwei Yang\",\"doi\":\"10.1016/j.eti.2024.103833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cadmium (Cd)-contaminated rice is the main source of Cd exposure that threatens food safety and human health. While plant growth-promoting bacteria (PGPB) have been reported to reduce Cd toxicity in rice, the effect of endophytic consortium is less understood compared to the single strain. Here, we reported that the PGPB consortium consisting of Cd-tolerant endophytic bacteria <em>Pseudomonas</em> sp. 4N2 and <em>Bacillus</em> sp. TB1 increased extracellular polymeric substance secretion and demonstrated a higher Cd removal rate compared to individual 4N2 and TB1. Further, two rice cultivar, namely the low-Cd-accumulating (LA) cultivar 728B and the high-Cd-accumulating (HA) cultivar BB, were inoculated with the 4N2-TB1 consortium. As expected, the consortium had a more pronounced effect on 728B, from which the endophytic bacteria were screened. The 4N2-TB1 consortium was found to facilitate the growth of rice seedlings and enhance their antioxidation activity. Moreover, the consortium significantly reduced Cd transfer coefficient from root to shoot through Cd immobilization in rice roots, resulting in a reduction from 30 % to 6 % in 728B and from 31 % to 13 % in BB. Furthermore, alpha-diversity analysis indicated an increased diversity and richness of the root bacterial community after 4N2-TB1 inoculation. Also, redundancy analysis confirmed a positive correlation between rice biomass and Cd content with a specific assemblage of bacteria including <em>Bacillus</em> and <em>Leifsonia</em>. These results demonstrated that the 4N2-TB1 consortium may alleviate Cd stress in rice cultivars through recruiting PGPB and Cd-binding bacteria on the root surface, thus strengthening the immobilization of Cd in rice roots.</div></div>\",\"PeriodicalId\":11725,\"journal\":{\"name\":\"Environmental Technology & Innovation\",\"volume\":\"36 \",\"pages\":\"Article 103833\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352186424003092/pdfft?md5=7bb4f2c1154a04355caa0451e4963957&pid=1-s2.0-S2352186424003092-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology & Innovation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352186424003092\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology & Innovation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352186424003092","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Endophytic consortium exhibits varying effects in mitigating cadmium toxicity in rice cultivars with distinct cadmium accumulation capacities
Cadmium (Cd)-contaminated rice is the main source of Cd exposure that threatens food safety and human health. While plant growth-promoting bacteria (PGPB) have been reported to reduce Cd toxicity in rice, the effect of endophytic consortium is less understood compared to the single strain. Here, we reported that the PGPB consortium consisting of Cd-tolerant endophytic bacteria Pseudomonas sp. 4N2 and Bacillus sp. TB1 increased extracellular polymeric substance secretion and demonstrated a higher Cd removal rate compared to individual 4N2 and TB1. Further, two rice cultivar, namely the low-Cd-accumulating (LA) cultivar 728B and the high-Cd-accumulating (HA) cultivar BB, were inoculated with the 4N2-TB1 consortium. As expected, the consortium had a more pronounced effect on 728B, from which the endophytic bacteria were screened. The 4N2-TB1 consortium was found to facilitate the growth of rice seedlings and enhance their antioxidation activity. Moreover, the consortium significantly reduced Cd transfer coefficient from root to shoot through Cd immobilization in rice roots, resulting in a reduction from 30 % to 6 % in 728B and from 31 % to 13 % in BB. Furthermore, alpha-diversity analysis indicated an increased diversity and richness of the root bacterial community after 4N2-TB1 inoculation. Also, redundancy analysis confirmed a positive correlation between rice biomass and Cd content with a specific assemblage of bacteria including Bacillus and Leifsonia. These results demonstrated that the 4N2-TB1 consortium may alleviate Cd stress in rice cultivars through recruiting PGPB and Cd-binding bacteria on the root surface, thus strengthening the immobilization of Cd in rice roots.
期刊介绍:
Environmental Technology & Innovation adopts a challenge-oriented approach to solutions by integrating natural sciences to promote a sustainable future. The journal aims to foster the creation and development of innovative products, technologies, and ideas that enhance the environment, with impacts across soil, air, water, and food in rural and urban areas.
As a platform for disseminating scientific evidence for environmental protection and sustainable development, the journal emphasizes fundamental science, methodologies, tools, techniques, and policy considerations. It emphasizes the importance of science and technology in environmental benefits, including smarter, cleaner technologies for environmental protection, more efficient resource processing methods, and the evidence supporting their effectiveness.