Pegah Tahani , Mehdi Habibi , Sebastian Magierowski
{"title":"使用 Gm-C 滤波器 sigma-delta 调制器的皮安培分辨率电流测量电路,用于低功耗纳米孔 DNA 测序","authors":"Pegah Tahani , Mehdi Habibi , Sebastian Magierowski","doi":"10.1016/j.aeue.2024.155508","DOIUrl":null,"url":null,"abstract":"<div><div>New generation DNA sequencers use an array of electrochemical cells equipped with nanopores, which produce pico-ampere current levels. Due to the large number of channels, low current levels and bandwidths in the order of a few kHz, in the design of these readout circuits, 2D arrays of in-channel, low noise and low power analog to digital converters are preferred. Previously many different sigma-delta modulators have been presented to convert the nanopore current signal into a digital code. Conventionally, the opamps required in these converters will eventually increase the power dissipation of each channel. In this paper a novel Gm-C filter based second order sigma-delta converter is proposed. In the given design, rather than relying on multiple opamps to achieve the necessary gain and noise performance, only a 4 transistor Gm block is used. Evaluations show that while the input referred noise remains close to previous methods, the power dissipation is considerably reduced. A prototype is also implemented to show the effectiveness of the approach. In a 180-nm design, an ENOB of 12.16 bits, RMS input referred noise of 0.2 pA at 10 kHz bandwidth and power dissipation of 8.27 μW is obtained per channel.</div></div>","PeriodicalId":50844,"journal":{"name":"Aeu-International Journal of Electronics and Communications","volume":"187 ","pages":"Article 155508"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pico-ampere resolution current measurement circuit using Gm-C filter sigma-delta modulator for low-power nanopore DNA sequencing\",\"authors\":\"Pegah Tahani , Mehdi Habibi , Sebastian Magierowski\",\"doi\":\"10.1016/j.aeue.2024.155508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>New generation DNA sequencers use an array of electrochemical cells equipped with nanopores, which produce pico-ampere current levels. Due to the large number of channels, low current levels and bandwidths in the order of a few kHz, in the design of these readout circuits, 2D arrays of in-channel, low noise and low power analog to digital converters are preferred. Previously many different sigma-delta modulators have been presented to convert the nanopore current signal into a digital code. Conventionally, the opamps required in these converters will eventually increase the power dissipation of each channel. In this paper a novel Gm-C filter based second order sigma-delta converter is proposed. In the given design, rather than relying on multiple opamps to achieve the necessary gain and noise performance, only a 4 transistor Gm block is used. Evaluations show that while the input referred noise remains close to previous methods, the power dissipation is considerably reduced. A prototype is also implemented to show the effectiveness of the approach. In a 180-nm design, an ENOB of 12.16 bits, RMS input referred noise of 0.2 pA at 10 kHz bandwidth and power dissipation of 8.27 μW is obtained per channel.</div></div>\",\"PeriodicalId\":50844,\"journal\":{\"name\":\"Aeu-International Journal of Electronics and Communications\",\"volume\":\"187 \",\"pages\":\"Article 155508\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aeu-International Journal of Electronics and Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1434841124003947\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aeu-International Journal of Electronics and Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1434841124003947","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Pico-ampere resolution current measurement circuit using Gm-C filter sigma-delta modulator for low-power nanopore DNA sequencing
New generation DNA sequencers use an array of electrochemical cells equipped with nanopores, which produce pico-ampere current levels. Due to the large number of channels, low current levels and bandwidths in the order of a few kHz, in the design of these readout circuits, 2D arrays of in-channel, low noise and low power analog to digital converters are preferred. Previously many different sigma-delta modulators have been presented to convert the nanopore current signal into a digital code. Conventionally, the opamps required in these converters will eventually increase the power dissipation of each channel. In this paper a novel Gm-C filter based second order sigma-delta converter is proposed. In the given design, rather than relying on multiple opamps to achieve the necessary gain and noise performance, only a 4 transistor Gm block is used. Evaluations show that while the input referred noise remains close to previous methods, the power dissipation is considerably reduced. A prototype is also implemented to show the effectiveness of the approach. In a 180-nm design, an ENOB of 12.16 bits, RMS input referred noise of 0.2 pA at 10 kHz bandwidth and power dissipation of 8.27 μW is obtained per channel.
期刊介绍:
AEÜ is an international scientific journal which publishes both original works and invited tutorials. The journal''s scope covers all aspects of theory and design of circuits, systems and devices for electronics, signal processing, and communication, including:
signal and system theory, digital signal processing
network theory and circuit design
information theory, communication theory and techniques, modulation, source and channel coding
switching theory and techniques, communication protocols
optical communications
microwave theory and techniques, radar, sonar
antennas, wave propagation
AEÜ publishes full papers and letters with very short turn around time but a high standard review process. Review cycles are typically finished within twelve weeks by application of modern electronic communication facilities.