{"title":"LightingFormer:用于弱光图像增强的变换器-CNN 混合网络","authors":"Cong Bi , Wenhua Qian , Jinde Cao , Xue Wang","doi":"10.1016/j.cag.2024.104089","DOIUrl":null,"url":null,"abstract":"<div><div>Recent deep-learning methods have shown promising results in low-light image enhancement. However, current methods often suffer from noise and artifacts, and most are based on convolutional neural networks, which have limitations in capturing long-range dependencies resulting in insufficient recovery of extremely dark parts in low-light images. To tackle these issues, this paper proposes a novel Transformer-based low-light image enhancement network called LightingFormer. Specifically, we propose a novel Transformer-CNN hybrid block that captures global and local information via mixed attention. It combines the advantages of the Transformer in capturing long-range dependencies and the advantages of CNNs in extracting low-level features and enhancing locality to recover extremely dark parts and enhance local details in low-light images. Moreover, we adopt the U-Net discriminator to enhance different regions in low-light images adaptively, avoiding overexposure or underexposure, and suppressing noise and artifacts. Extensive experiments show that our method outperforms the state-of-the-art methods quantitatively and qualitatively. Furthermore, the application to object detection demonstrates the potential of our method in high-level vision tasks.</div></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"124 ","pages":"Article 104089"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LightingFormer: Transformer-CNN hybrid network for low-light image enhancement\",\"authors\":\"Cong Bi , Wenhua Qian , Jinde Cao , Xue Wang\",\"doi\":\"10.1016/j.cag.2024.104089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recent deep-learning methods have shown promising results in low-light image enhancement. However, current methods often suffer from noise and artifacts, and most are based on convolutional neural networks, which have limitations in capturing long-range dependencies resulting in insufficient recovery of extremely dark parts in low-light images. To tackle these issues, this paper proposes a novel Transformer-based low-light image enhancement network called LightingFormer. Specifically, we propose a novel Transformer-CNN hybrid block that captures global and local information via mixed attention. It combines the advantages of the Transformer in capturing long-range dependencies and the advantages of CNNs in extracting low-level features and enhancing locality to recover extremely dark parts and enhance local details in low-light images. Moreover, we adopt the U-Net discriminator to enhance different regions in low-light images adaptively, avoiding overexposure or underexposure, and suppressing noise and artifacts. Extensive experiments show that our method outperforms the state-of-the-art methods quantitatively and qualitatively. Furthermore, the application to object detection demonstrates the potential of our method in high-level vision tasks.</div></div>\",\"PeriodicalId\":50628,\"journal\":{\"name\":\"Computers & Graphics-Uk\",\"volume\":\"124 \",\"pages\":\"Article 104089\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Graphics-Uk\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097849324002243\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849324002243","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
LightingFormer: Transformer-CNN hybrid network for low-light image enhancement
Recent deep-learning methods have shown promising results in low-light image enhancement. However, current methods often suffer from noise and artifacts, and most are based on convolutional neural networks, which have limitations in capturing long-range dependencies resulting in insufficient recovery of extremely dark parts in low-light images. To tackle these issues, this paper proposes a novel Transformer-based low-light image enhancement network called LightingFormer. Specifically, we propose a novel Transformer-CNN hybrid block that captures global and local information via mixed attention. It combines the advantages of the Transformer in capturing long-range dependencies and the advantages of CNNs in extracting low-level features and enhancing locality to recover extremely dark parts and enhance local details in low-light images. Moreover, we adopt the U-Net discriminator to enhance different regions in low-light images adaptively, avoiding overexposure or underexposure, and suppressing noise and artifacts. Extensive experiments show that our method outperforms the state-of-the-art methods quantitatively and qualitatively. Furthermore, the application to object detection demonstrates the potential of our method in high-level vision tasks.
期刊介绍:
Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on:
1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains.
2. State-of-the-art papers on late-breaking, cutting-edge research on CG.
3. Information on innovative uses of graphics principles and technologies.
4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.