定制选择性锌沉积模式的界面局部活化策略,实现稳定的锌阳极

IF 12.7 1区 材料科学 Q1 ENGINEERING, MULTIDISCIPLINARY Composites Part B: Engineering Pub Date : 2024-09-21 DOI:10.1016/j.compositesb.2024.111860
Xuyang Wu , Wei Yuan , Xiaoqing Zhang , Qing Liu , Chun Wang , Lanchen Xue , Chun Li , Tengjia Gao , Simin Jiang , Bote Zhao , Yu Chen , Tingting Yu , Yong Tang
{"title":"定制选择性锌沉积模式的界面局部活化策略,实现稳定的锌阳极","authors":"Xuyang Wu ,&nbsp;Wei Yuan ,&nbsp;Xiaoqing Zhang ,&nbsp;Qing Liu ,&nbsp;Chun Wang ,&nbsp;Lanchen Xue ,&nbsp;Chun Li ,&nbsp;Tengjia Gao ,&nbsp;Simin Jiang ,&nbsp;Bote Zhao ,&nbsp;Yu Chen ,&nbsp;Tingting Yu ,&nbsp;Yong Tang","doi":"10.1016/j.compositesb.2024.111860","DOIUrl":null,"url":null,"abstract":"<div><div>\"Tip effect\" triggered by uneven zinc deposition accelerates the growth of Zn dendrites. The unfavorable interfacial activity gradient aggravates zinc deposition at the tips, which is the root cause of zinc dendrites. This study reports an interfacial local activation strategy to reconfigure the interfacial activity gradient of zinc anode to promote more stable operation of zinc batteries. A locally activated zinc anode (Zn-ILA) is proposed as the proof-of-concept zinc anode by constructing high-active microchannels to induce preferential zinc deposition, while the remaining low-active region is accompanied by zinc epitaxial growth, thus achieving bottom-up zinc deposition at the anode interface. A fabrication method based on nanosecond pulsed laser is used to modify the zinc anode by creating high-active microchannels through thermal impingement. Additionally, low-active regions covered by dense ZnO nanoparticles are also formed due to the plasma effect. The laser-induced cross-scale oxide layers help improve the corrosion resistance at the full zinc anode interface. The proposed interfacial local activation strategy enables ordered selective deposition at the Zn-ILA interface owing to the activity gradient, as well as stabilizes the long-term operation of symmetric and full cells. The effectiveness of Zn-ILA is also validated in large-area pouch batteries, showing great potential for large-scale energy storage systems.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"287 ","pages":"Article 111860"},"PeriodicalIF":12.7000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interfacial local activation strategy tailoring selective zinc deposition pattern for stable zinc anodes\",\"authors\":\"Xuyang Wu ,&nbsp;Wei Yuan ,&nbsp;Xiaoqing Zhang ,&nbsp;Qing Liu ,&nbsp;Chun Wang ,&nbsp;Lanchen Xue ,&nbsp;Chun Li ,&nbsp;Tengjia Gao ,&nbsp;Simin Jiang ,&nbsp;Bote Zhao ,&nbsp;Yu Chen ,&nbsp;Tingting Yu ,&nbsp;Yong Tang\",\"doi\":\"10.1016/j.compositesb.2024.111860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>\\\"Tip effect\\\" triggered by uneven zinc deposition accelerates the growth of Zn dendrites. The unfavorable interfacial activity gradient aggravates zinc deposition at the tips, which is the root cause of zinc dendrites. This study reports an interfacial local activation strategy to reconfigure the interfacial activity gradient of zinc anode to promote more stable operation of zinc batteries. A locally activated zinc anode (Zn-ILA) is proposed as the proof-of-concept zinc anode by constructing high-active microchannels to induce preferential zinc deposition, while the remaining low-active region is accompanied by zinc epitaxial growth, thus achieving bottom-up zinc deposition at the anode interface. A fabrication method based on nanosecond pulsed laser is used to modify the zinc anode by creating high-active microchannels through thermal impingement. Additionally, low-active regions covered by dense ZnO nanoparticles are also formed due to the plasma effect. The laser-induced cross-scale oxide layers help improve the corrosion resistance at the full zinc anode interface. The proposed interfacial local activation strategy enables ordered selective deposition at the Zn-ILA interface owing to the activity gradient, as well as stabilizes the long-term operation of symmetric and full cells. The effectiveness of Zn-ILA is also validated in large-area pouch batteries, showing great potential for large-scale energy storage systems.</div></div>\",\"PeriodicalId\":10660,\"journal\":{\"name\":\"Composites Part B: Engineering\",\"volume\":\"287 \",\"pages\":\"Article 111860\"},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part B: Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359836824006723\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836824006723","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锌沉积不均匀引发的 "尖端效应 "加速了锌枝晶的生长。不利的界面活性梯度加剧了锌在尖端的沉积,这是产生锌枝晶的根本原因。本研究报告了一种界面局部活化策略,用于重新配置锌阳极的界面活性梯度,以促进锌电池更稳定地运行。研究提出了一种局部活化锌阳极(Zn-ILA)作为概念验证锌阳极,通过构建高活性微通道来诱导锌的优先沉积,而剩余的低活性区域则伴随着锌的外延生长,从而在阳极界面实现自下而上的锌沉积。基于纳秒脉冲激光的制造方法通过热冲击形成高活性微通道,从而对锌阳极进行改性。此外,由于等离子体效应,还形成了由致密氧化锌纳米颗粒覆盖的低活性区域。激光诱导的跨尺度氧化层有助于提高全锌阳极界面的耐腐蚀性。由于活性梯度的存在,所提出的界面局部活化策略能够在 Zn-ILA 界面实现有序选择性沉积,并稳定对称和全电池的长期运行。Zn-ILA 的有效性在大面积袋式电池中也得到了验证,显示了其在大规模储能系统中的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interfacial local activation strategy tailoring selective zinc deposition pattern for stable zinc anodes
"Tip effect" triggered by uneven zinc deposition accelerates the growth of Zn dendrites. The unfavorable interfacial activity gradient aggravates zinc deposition at the tips, which is the root cause of zinc dendrites. This study reports an interfacial local activation strategy to reconfigure the interfacial activity gradient of zinc anode to promote more stable operation of zinc batteries. A locally activated zinc anode (Zn-ILA) is proposed as the proof-of-concept zinc anode by constructing high-active microchannels to induce preferential zinc deposition, while the remaining low-active region is accompanied by zinc epitaxial growth, thus achieving bottom-up zinc deposition at the anode interface. A fabrication method based on nanosecond pulsed laser is used to modify the zinc anode by creating high-active microchannels through thermal impingement. Additionally, low-active regions covered by dense ZnO nanoparticles are also formed due to the plasma effect. The laser-induced cross-scale oxide layers help improve the corrosion resistance at the full zinc anode interface. The proposed interfacial local activation strategy enables ordered selective deposition at the Zn-ILA interface owing to the activity gradient, as well as stabilizes the long-term operation of symmetric and full cells. The effectiveness of Zn-ILA is also validated in large-area pouch batteries, showing great potential for large-scale energy storage systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Part B: Engineering
Composites Part B: Engineering 工程技术-材料科学:复合
CiteScore
24.40
自引率
11.50%
发文量
784
审稿时长
21 days
期刊介绍: Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development. The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.
期刊最新文献
Spider web-inspired sericin/polyacrylamide composite hydrogel with super-low hysteresis for monitoring penalty of sports competition Engineered dECM-based microsystem promotes cartilage regeneration in osteoarthritis by synergistically enhancing chondrogenesis of BMSCs and anti-inflammatory effect On demand thermal surface modification of carbon fiber for improved interfacial shear strength Personalized customization of in-plane thermal conductive networks by a novel electrospinning method Microchannels-enabled vertical alignment of hexagonal boron nitride in silicone rubber composites to achieve high through-plane thermal conductivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1