用于蛋白质结构预测的深度学习方法

Yiming Qin, Zihan Chen, Ye Peng, Ying Xiao, Tian Zhong, Xi Yu
{"title":"用于蛋白质结构预测的深度学习方法","authors":"Yiming Qin,&nbsp;Zihan Chen,&nbsp;Ye Peng,&nbsp;Ying Xiao,&nbsp;Tian Zhong,&nbsp;Xi Yu","doi":"10.1002/mef2.96","DOIUrl":null,"url":null,"abstract":"<p>Protein structure prediction (PSP) has been a prominent topic in bioinformatics and computational biology, aiming to predict protein function and structure from sequence data. The three-dimensional conformation of proteins is pivotal for their intricate biological roles. With the advancement of computational capabilities and the adoption of deep learning (DL) technologies (especially Transformer network architectures), the PSP field has ushered in a brand-new era of “neuralization.” Here, we focus on reviewing the evolution of PSP from traditional to modern deep learning-based approaches and the characteristics of various structural prediction methods. This emphasizes the advantages of deep learning-based hybrid prediction methods over traditional approaches. This study also provides a summary analysis of widely used bioinformatics databases and the latest structure prediction models. It discusses deep learning networks and algorithmic optimization for model training, validation, and evaluation. In addition, a summary discussion of the major advances in deep learning-based protein structure prediction is presented. The update of AlphaFold 3 further extends the boundaries of prediction models, especially in protein-small molecule structure prediction. This marks a key shift toward a holistic approach in biomolecular structure elucidation, aiming at solving almost all sequence-to-structure puzzles in various biological phenomena.</p>","PeriodicalId":74135,"journal":{"name":"MedComm - Future medicine","volume":"3 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mef2.96","citationCount":"0","resultStr":"{\"title\":\"Deep learning methods for protein structure prediction\",\"authors\":\"Yiming Qin,&nbsp;Zihan Chen,&nbsp;Ye Peng,&nbsp;Ying Xiao,&nbsp;Tian Zhong,&nbsp;Xi Yu\",\"doi\":\"10.1002/mef2.96\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Protein structure prediction (PSP) has been a prominent topic in bioinformatics and computational biology, aiming to predict protein function and structure from sequence data. The three-dimensional conformation of proteins is pivotal for their intricate biological roles. With the advancement of computational capabilities and the adoption of deep learning (DL) technologies (especially Transformer network architectures), the PSP field has ushered in a brand-new era of “neuralization.” Here, we focus on reviewing the evolution of PSP from traditional to modern deep learning-based approaches and the characteristics of various structural prediction methods. This emphasizes the advantages of deep learning-based hybrid prediction methods over traditional approaches. This study also provides a summary analysis of widely used bioinformatics databases and the latest structure prediction models. It discusses deep learning networks and algorithmic optimization for model training, validation, and evaluation. In addition, a summary discussion of the major advances in deep learning-based protein structure prediction is presented. The update of AlphaFold 3 further extends the boundaries of prediction models, especially in protein-small molecule structure prediction. This marks a key shift toward a holistic approach in biomolecular structure elucidation, aiming at solving almost all sequence-to-structure puzzles in various biological phenomena.</p>\",\"PeriodicalId\":74135,\"journal\":{\"name\":\"MedComm - Future medicine\",\"volume\":\"3 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mef2.96\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MedComm - Future medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mef2.96\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedComm - Future medicine","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mef2.96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质结构预测(PSP)一直是生物信息学和计算生物学的一个重要课题,其目的是从序列数据中预测蛋白质的功能和结构。蛋白质的三维构象对其复杂的生物学作用至关重要。随着计算能力的提升和深度学习(DL)技术(尤其是 Transformer 网络架构)的采用,PSP 领域迎来了一个全新的 "神经化 "时代。在此,我们将重点回顾 PSP 从传统方法到基于深度学习的现代方法的演变过程,以及各种结构预测方法的特点。这强调了基于深度学习的混合预测方法相对于传统方法的优势。本研究还对广泛使用的生物信息学数据库和最新的结构预测模型进行了总结分析。研究还讨论了深度学习网络以及用于模型训练、验证和评估的算法优化。此外,还总结讨论了基于深度学习的蛋白质结构预测的主要进展。AlphaFold 3 的更新进一步扩展了预测模型的边界,尤其是在蛋白质-小分子结构预测方面。这标志着生物分子结构阐释向整体方法的关键转变,旨在解决各种生物现象中几乎所有序列到结构的难题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep learning methods for protein structure prediction

Protein structure prediction (PSP) has been a prominent topic in bioinformatics and computational biology, aiming to predict protein function and structure from sequence data. The three-dimensional conformation of proteins is pivotal for their intricate biological roles. With the advancement of computational capabilities and the adoption of deep learning (DL) technologies (especially Transformer network architectures), the PSP field has ushered in a brand-new era of “neuralization.” Here, we focus on reviewing the evolution of PSP from traditional to modern deep learning-based approaches and the characteristics of various structural prediction methods. This emphasizes the advantages of deep learning-based hybrid prediction methods over traditional approaches. This study also provides a summary analysis of widely used bioinformatics databases and the latest structure prediction models. It discusses deep learning networks and algorithmic optimization for model training, validation, and evaluation. In addition, a summary discussion of the major advances in deep learning-based protein structure prediction is presented. The update of AlphaFold 3 further extends the boundaries of prediction models, especially in protein-small molecule structure prediction. This marks a key shift toward a holistic approach in biomolecular structure elucidation, aiming at solving almost all sequence-to-structure puzzles in various biological phenomena.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
期刊最新文献
Vancomycin-intermediate Staphylococcus aureus employs CcpA-GlmS metabolism regulatory cascade to resist vancomycin Cysteinyl-tRNA synthetase is involved in damage of renal tubular cells in ischemia–reperfusion-induced acute kidney injury via pyroptosis A single-cell transcriptomic atlas of severe intrauterine adhesion Long COVID across SARS-CoV-2 variants: Clinical features, pathogenesis, and future directions Role of next-generation sequencing in revolutionizing healthcare for cancer management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1