{"title":"RetNet30:用于视网膜疾病自动诊断的新型堆积卷积神经网络模型","authors":"Krishnakumar Subramaniam, Archana Naganathan","doi":"10.1002/ima.23187","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Automated diagnosis of retinal diseases holds significant promise in enhancing healthcare efficiency and patient outcomes. However, existing methods often lack the accuracy and efficiency required for timely disease detection. To address this gap, we introduce RetNet30, a novel stacked convolutional neural network (CNN) designed to revolutionize automated retinal disease diagnosis. RetNet30 combines a custom-built 30-layer CNN with a fine-tuned Inception V3 model, integrating these sub-models through logistic regression to achieve superior classification performance. Extensive evaluations on retinal image datasets such as DRIVE, STARE, CHASE_DB1, and HRF demonstrate significant improvements in accuracy, sensitivity, specificity, and area under the ROC curve (AUROC) when compared to conventional approaches. By leveraging advanced deep learning architectures, RetNet30 not only enhances diagnostic precision but also generalizes effectively across diverse datasets, establishing a new benchmark in retinal disease classification. This novel approach offers a highly efficient and reliable solution for early disease detection and patient management, addressing the limitations of manual examination methods. Through rigorous quantitative and qualitative assessments, our proposed method demonstrates its potential to significantly impact medical image analysis and improve healthcare outcomes. RetNet30 marks a major step forward in automated retinal disease diagnosis, showcasing the future of AI-driven advancements in ophthalmology.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"34 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RetNet30: A Novel Stacked Convolution Neural Network Model for Automated Retinal Disease Diagnosis\",\"authors\":\"Krishnakumar Subramaniam, Archana Naganathan\",\"doi\":\"10.1002/ima.23187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Automated diagnosis of retinal diseases holds significant promise in enhancing healthcare efficiency and patient outcomes. However, existing methods often lack the accuracy and efficiency required for timely disease detection. To address this gap, we introduce RetNet30, a novel stacked convolutional neural network (CNN) designed to revolutionize automated retinal disease diagnosis. RetNet30 combines a custom-built 30-layer CNN with a fine-tuned Inception V3 model, integrating these sub-models through logistic regression to achieve superior classification performance. Extensive evaluations on retinal image datasets such as DRIVE, STARE, CHASE_DB1, and HRF demonstrate significant improvements in accuracy, sensitivity, specificity, and area under the ROC curve (AUROC) when compared to conventional approaches. By leveraging advanced deep learning architectures, RetNet30 not only enhances diagnostic precision but also generalizes effectively across diverse datasets, establishing a new benchmark in retinal disease classification. This novel approach offers a highly efficient and reliable solution for early disease detection and patient management, addressing the limitations of manual examination methods. Through rigorous quantitative and qualitative assessments, our proposed method demonstrates its potential to significantly impact medical image analysis and improve healthcare outcomes. RetNet30 marks a major step forward in automated retinal disease diagnosis, showcasing the future of AI-driven advancements in ophthalmology.</p>\\n </div>\",\"PeriodicalId\":14027,\"journal\":{\"name\":\"International Journal of Imaging Systems and Technology\",\"volume\":\"34 5\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Imaging Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ima.23187\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.23187","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
RetNet30: A Novel Stacked Convolution Neural Network Model for Automated Retinal Disease Diagnosis
Automated diagnosis of retinal diseases holds significant promise in enhancing healthcare efficiency and patient outcomes. However, existing methods often lack the accuracy and efficiency required for timely disease detection. To address this gap, we introduce RetNet30, a novel stacked convolutional neural network (CNN) designed to revolutionize automated retinal disease diagnosis. RetNet30 combines a custom-built 30-layer CNN with a fine-tuned Inception V3 model, integrating these sub-models through logistic regression to achieve superior classification performance. Extensive evaluations on retinal image datasets such as DRIVE, STARE, CHASE_DB1, and HRF demonstrate significant improvements in accuracy, sensitivity, specificity, and area under the ROC curve (AUROC) when compared to conventional approaches. By leveraging advanced deep learning architectures, RetNet30 not only enhances diagnostic precision but also generalizes effectively across diverse datasets, establishing a new benchmark in retinal disease classification. This novel approach offers a highly efficient and reliable solution for early disease detection and patient management, addressing the limitations of manual examination methods. Through rigorous quantitative and qualitative assessments, our proposed method demonstrates its potential to significantly impact medical image analysis and improve healthcare outcomes. RetNet30 marks a major step forward in automated retinal disease diagnosis, showcasing the future of AI-driven advancements in ophthalmology.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.