在室温条件下实现几层 WSe2 雪崩光电探测器的噪声极限

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL ACS Catalysis Pub Date : 2024-09-25 DOI:10.1021/acs.nanolett.4c03450
Xin Li, Jin Chen, Feilong Yu, Xiaoshuang Chen, Wei Lu, Guanhai Li
{"title":"在室温条件下实现几层 WSe2 雪崩光电探测器的噪声极限","authors":"Xin Li, Jin Chen, Feilong Yu, Xiaoshuang Chen, Wei Lu, Guanhai Li","doi":"10.1021/acs.nanolett.4c03450","DOIUrl":null,"url":null,"abstract":"We engineered a two-dimensional Pt/WSe<sub>2</sub>/Ni avalanche photodetector (APD) optimized for ultraweak signal detection at room temperature. By fine-tuning the work functions, we achieved an ultralow dark current of 10<sup>–14</sup> A under small bias, with a noise equivalent power (NEP) of 8.09 fW/Hz<sup>1/2</sup>. This performance is driven by effective dark barrier blocking and a record-long electron mean free path (123 nm) in intrinsic WSe<sub>2</sub>, minimizing dark carrier replenishment and suppressing noise under an ultralow electric field. Our APD exhibits a high gain of 5 × 10<sup>5</sup> at a modulation frequency of 20 kHz, effectively balancing gain and bandwidth, a common challenge in traditional photovoltaic-based APDs. By addressing the typical challenges of high noise and low gain and minimizing dependence on high electric fields, this work highlights the potential of 2D materials in developing efficient, low-power, and ultrasensitive photodetections.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achieving a Noise Limit with a Few-layer WSe2 Avalanche Photodetector at Room Temperature\",\"authors\":\"Xin Li, Jin Chen, Feilong Yu, Xiaoshuang Chen, Wei Lu, Guanhai Li\",\"doi\":\"10.1021/acs.nanolett.4c03450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We engineered a two-dimensional Pt/WSe<sub>2</sub>/Ni avalanche photodetector (APD) optimized for ultraweak signal detection at room temperature. By fine-tuning the work functions, we achieved an ultralow dark current of 10<sup>–14</sup> A under small bias, with a noise equivalent power (NEP) of 8.09 fW/Hz<sup>1/2</sup>. This performance is driven by effective dark barrier blocking and a record-long electron mean free path (123 nm) in intrinsic WSe<sub>2</sub>, minimizing dark carrier replenishment and suppressing noise under an ultralow electric field. Our APD exhibits a high gain of 5 × 10<sup>5</sup> at a modulation frequency of 20 kHz, effectively balancing gain and bandwidth, a common challenge in traditional photovoltaic-based APDs. By addressing the typical challenges of high noise and low gain and minimizing dependence on high electric fields, this work highlights the potential of 2D materials in developing efficient, low-power, and ultrasensitive photodetections.\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c03450\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03450","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们设计了一种二维 Pt/WSe2/Ni 雪崩光电探测器 (APD),它针对室温下的超弱信号检测进行了优化。通过微调工作函数,我们在小偏压下实现了 10-14 A 的超低暗电流,噪声等效功率 (NEP) 为 8.09 fW/Hz1/2。这一性能得益于本征 WSe2 中有效的暗势垒阻断和创纪录的长电子平均自由路径(123 nm),从而最大限度地减少了暗载流子补充,并抑制了超低电场下的噪声。我们的 APD 在 20 kHz 的调制频率下具有 5 × 105 的高增益,有效地平衡了增益和带宽,而这正是传统光电 APD 所面临的共同挑战。通过解决高噪声和低增益的典型挑战,并最大限度地减少对高电场的依赖,这项工作凸显了二维材料在开发高效、低功耗和超灵敏光检测器方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Achieving a Noise Limit with a Few-layer WSe2 Avalanche Photodetector at Room Temperature
We engineered a two-dimensional Pt/WSe2/Ni avalanche photodetector (APD) optimized for ultraweak signal detection at room temperature. By fine-tuning the work functions, we achieved an ultralow dark current of 10–14 A under small bias, with a noise equivalent power (NEP) of 8.09 fW/Hz1/2. This performance is driven by effective dark barrier blocking and a record-long electron mean free path (123 nm) in intrinsic WSe2, minimizing dark carrier replenishment and suppressing noise under an ultralow electric field. Our APD exhibits a high gain of 5 × 105 at a modulation frequency of 20 kHz, effectively balancing gain and bandwidth, a common challenge in traditional photovoltaic-based APDs. By addressing the typical challenges of high noise and low gain and minimizing dependence on high electric fields, this work highlights the potential of 2D materials in developing efficient, low-power, and ultrasensitive photodetections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
期刊最新文献
Dendrite-free zinc metal anode for long-life zinc-ion batteries enabled by an artificial hydrophobic-zincophilic coating. Bioderived carbon aerogels loaded with g-C3N4 and their high Efficacy removing volatile organic compounds (VOCs). Crosslinking modification of starch improves the structural stability of hard carbon anodes for high-capacity sodium storage. Interfacial design of pyrene-based covalent organic framework for overall photocatalytic H2O2 synthesis in water. LaCo0.95Mo0.05O3/CeO2 composite can promote the effective activation of peroxymonosulfate via Co3+/Co2+ cycle and realize the efficient degradation of hydroxychloroquine sulfate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1