椰子树(Cocos nucifera L.)树根菌根生态学:田间影响 AMF 的因素分析

IF 3.4 3区 生物学 Q1 PLANT SCIENCES Rhizosphere Pub Date : 2024-09-20 DOI:10.1016/j.rhisph.2024.100961
{"title":"椰子树(Cocos nucifera L.)树根菌根生态学:田间影响 AMF 的因素分析","authors":"","doi":"10.1016/j.rhisph.2024.100961","DOIUrl":null,"url":null,"abstract":"<div><div>This study is the first thorough ecological analysis of arbuscular mycorrhizal fungal (AMF) diversity in randomly selected traditional coconut fields across Kerala, South India. We conducted a critical analysis of AMF diversity, percentage root length colonization (PRLC), and mean spore density (MSD) across 248 sites, taking into account variations in plant, environmental, and soil factors like coconut varieties, palm health conditions, agroclimatic zones, soil types, and seasons in the region. A total of 23 AMF species from seven genera (Acaulospora, Archaeospora, Funneliformis, Glomus, Sclerocystis, Septoglomus, and Scutellospora) were identified, with <em>Acaulospora scrobiculata</em> being the dominant species in all studied fields. A critical analysis of diversity indices, including the Shannon-Weiner Index, Simpson's diversity index, and Gini-Simpson index, concerning variables indicated that soil series influences AMF diversity in specific fields. Correlational and principal component analyses highlighted the interrelationships between specific soil types and quality parameters affecting AMF characteristics, underscoring their crucial role in coconut palm growth. The study also revealed the ecological amplitudes of indigenous AMF species related to specific soil fertility parameters. Overall, this research serves as a model for identifying root- and soil-specific AMF in agricultural fields and provides valuable ecological insights for utilizing indigenous AMF species as ecotechnological tools for sustainable coconut cultivation.</div></div>","PeriodicalId":48589,"journal":{"name":"Rhizosphere","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ecology of arbuscular mycorrhizal association in coconut (Cocos nucifera L.) palms: Analysis of factors influencing AMF in fields\",\"authors\":\"\",\"doi\":\"10.1016/j.rhisph.2024.100961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study is the first thorough ecological analysis of arbuscular mycorrhizal fungal (AMF) diversity in randomly selected traditional coconut fields across Kerala, South India. We conducted a critical analysis of AMF diversity, percentage root length colonization (PRLC), and mean spore density (MSD) across 248 sites, taking into account variations in plant, environmental, and soil factors like coconut varieties, palm health conditions, agroclimatic zones, soil types, and seasons in the region. A total of 23 AMF species from seven genera (Acaulospora, Archaeospora, Funneliformis, Glomus, Sclerocystis, Septoglomus, and Scutellospora) were identified, with <em>Acaulospora scrobiculata</em> being the dominant species in all studied fields. A critical analysis of diversity indices, including the Shannon-Weiner Index, Simpson's diversity index, and Gini-Simpson index, concerning variables indicated that soil series influences AMF diversity in specific fields. Correlational and principal component analyses highlighted the interrelationships between specific soil types and quality parameters affecting AMF characteristics, underscoring their crucial role in coconut palm growth. The study also revealed the ecological amplitudes of indigenous AMF species related to specific soil fertility parameters. Overall, this research serves as a model for identifying root- and soil-specific AMF in agricultural fields and provides valuable ecological insights for utilizing indigenous AMF species as ecotechnological tools for sustainable coconut cultivation.</div></div>\",\"PeriodicalId\":48589,\"journal\":{\"name\":\"Rhizosphere\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rhizosphere\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452219824001162\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rhizosphere","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452219824001162","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究是对印度南部喀拉拉邦随机选择的传统椰子田中的丛枝菌根真菌(AMF)多样性进行的首次全面生态分析。考虑到该地区植物、环境和土壤因素(如椰子品种、棕榈健康状况、农业气候区、土壤类型和季节)的变化,我们对 248 个地点的 AMF 多样性、根长定殖百分比(PRLC)和平均孢子密度(MSD)进行了重要分析。共鉴定出七个属(Acaulospora、Archaeospora、Funneliformis、Glomus、Sclerocystis、Septoglomus 和 Scutellospora)的 23 个 AMF 物种,Acaulospora scrobiculata 是所有研究区域的优势物种。对有关变量的多样性指数(包括香农-韦纳指数、辛普森多样性指数和吉尼-辛普森指数)进行的重要分析表明,土壤系列对特定田块的 AMF 多样性有影响。相关分析和主成分分析强调了特定土壤类型与影响 AMF 特性的质量参数之间的相互关系,突出了它们在椰子树生长中的关键作用。研究还揭示了与特定土壤肥力参数相关的本地 AMF 物种的生态幅度。总之,这项研究可作为识别农田中根系和土壤特异性 AMF 的模型,并为利用本土 AMF 物种作为可持续椰子栽培的生态技术工具提供宝贵的生态学见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ecology of arbuscular mycorrhizal association in coconut (Cocos nucifera L.) palms: Analysis of factors influencing AMF in fields
This study is the first thorough ecological analysis of arbuscular mycorrhizal fungal (AMF) diversity in randomly selected traditional coconut fields across Kerala, South India. We conducted a critical analysis of AMF diversity, percentage root length colonization (PRLC), and mean spore density (MSD) across 248 sites, taking into account variations in plant, environmental, and soil factors like coconut varieties, palm health conditions, agroclimatic zones, soil types, and seasons in the region. A total of 23 AMF species from seven genera (Acaulospora, Archaeospora, Funneliformis, Glomus, Sclerocystis, Septoglomus, and Scutellospora) were identified, with Acaulospora scrobiculata being the dominant species in all studied fields. A critical analysis of diversity indices, including the Shannon-Weiner Index, Simpson's diversity index, and Gini-Simpson index, concerning variables indicated that soil series influences AMF diversity in specific fields. Correlational and principal component analyses highlighted the interrelationships between specific soil types and quality parameters affecting AMF characteristics, underscoring their crucial role in coconut palm growth. The study also revealed the ecological amplitudes of indigenous AMF species related to specific soil fertility parameters. Overall, this research serves as a model for identifying root- and soil-specific AMF in agricultural fields and provides valuable ecological insights for utilizing indigenous AMF species as ecotechnological tools for sustainable coconut cultivation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rhizosphere
Rhizosphere Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
5.70
自引率
8.10%
发文量
155
审稿时长
29 days
期刊介绍: Rhizosphere aims to advance the frontier of our understanding of plant-soil interactions. Rhizosphere is a multidisciplinary journal that publishes research on the interactions between plant roots, soil organisms, nutrients, and water. Except carbon fixation by photosynthesis, plants obtain all other elements primarily from soil through roots. We are beginning to understand how communications at the rhizosphere, with soil organisms and other plant species, affect root exudates and nutrient uptake. This rapidly evolving subject utilizes molecular biology and genomic tools, food web or community structure manipulations, high performance liquid chromatography, isotopic analysis, diverse spectroscopic analytics, tomography and other microscopy, complex statistical and modeling tools.
期刊最新文献
Locomotion of Bacillus subtilis SL-44 mediated by root exudate and carrier in Cr(OH)3-modified porous media Nitrate Over Ammonium: Limited inorganic N niche partitioning between wheat and weeds regardless of fertilization treatment Ecology of arbuscular mycorrhizal association in coconut (Cocos nucifera L.) palms: Analysis of factors influencing AMF in fields Fungal secondary metabolite gliotoxin enhances enzymatic activity in soils by reshaping their microbiome Rice night-time thirst: Genotype nutrient needs reflected in nocturnal transpiration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1