{"title":"用于非线性扑翼预测的高效多保真降阶建模","authors":"","doi":"10.1016/j.ast.2024.109612","DOIUrl":null,"url":null,"abstract":"<div><div>Flutter prediction is an important part of aircraft design. However, high-fidelity predictions for transonic flutter are difficult to make because of the associated computational costs. This paper proposes a multi-fidelity reduced-order modeling (MFROM) framework for flutter predictions to achieve high-fidelity simulations with limited computational costs. The high-fidelity data were obtained from a Navier–Stokes-equation-based solver, while the low-fidelity data were taken from an Euler-equation-based flow solver. By employing a multi-fidelity neural network trained with two types of data, this methodology enables nonlinear predictions for transonic results. To demonstrate the multi-fidelity process, a widely used pitching and plunging airfoil case is considered. Verification of the approach was performed by comparing with results from time-domain aeroelastic solvers. The results showed that the proposed multi-fidelity neural network modeling framework could realize online predictions of unsteady aerodynamic forces and flutter responses across multiple Mach numbers. Compared with the typical multi-fidelity method, the proposed neural network has a higher accuracy and a stronger generalization capability. Finally, the potential of the method to reduce the computational effort of high-fidelity aeroelastic analysis was demonstrated.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient multi-fidelity reduced-order modeling for nonlinear flutter prediction\",\"authors\":\"\",\"doi\":\"10.1016/j.ast.2024.109612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Flutter prediction is an important part of aircraft design. However, high-fidelity predictions for transonic flutter are difficult to make because of the associated computational costs. This paper proposes a multi-fidelity reduced-order modeling (MFROM) framework for flutter predictions to achieve high-fidelity simulations with limited computational costs. The high-fidelity data were obtained from a Navier–Stokes-equation-based solver, while the low-fidelity data were taken from an Euler-equation-based flow solver. By employing a multi-fidelity neural network trained with two types of data, this methodology enables nonlinear predictions for transonic results. To demonstrate the multi-fidelity process, a widely used pitching and plunging airfoil case is considered. Verification of the approach was performed by comparing with results from time-domain aeroelastic solvers. The results showed that the proposed multi-fidelity neural network modeling framework could realize online predictions of unsteady aerodynamic forces and flutter responses across multiple Mach numbers. Compared with the typical multi-fidelity method, the proposed neural network has a higher accuracy and a stronger generalization capability. Finally, the potential of the method to reduce the computational effort of high-fidelity aeroelastic analysis was demonstrated.</div></div>\",\"PeriodicalId\":50955,\"journal\":{\"name\":\"Aerospace Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1270963824007417\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824007417","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Efficient multi-fidelity reduced-order modeling for nonlinear flutter prediction
Flutter prediction is an important part of aircraft design. However, high-fidelity predictions for transonic flutter are difficult to make because of the associated computational costs. This paper proposes a multi-fidelity reduced-order modeling (MFROM) framework for flutter predictions to achieve high-fidelity simulations with limited computational costs. The high-fidelity data were obtained from a Navier–Stokes-equation-based solver, while the low-fidelity data were taken from an Euler-equation-based flow solver. By employing a multi-fidelity neural network trained with two types of data, this methodology enables nonlinear predictions for transonic results. To demonstrate the multi-fidelity process, a widely used pitching and plunging airfoil case is considered. Verification of the approach was performed by comparing with results from time-domain aeroelastic solvers. The results showed that the proposed multi-fidelity neural network modeling framework could realize online predictions of unsteady aerodynamic forces and flutter responses across multiple Mach numbers. Compared with the typical multi-fidelity method, the proposed neural network has a higher accuracy and a stronger generalization capability. Finally, the potential of the method to reduce the computational effort of high-fidelity aeroelastic analysis was demonstrated.
期刊介绍:
Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to:
• The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites
• The control of their environment
• The study of various systems they are involved in, as supports or as targets.
Authors are invited to submit papers on new advances in the following topics to aerospace applications:
• Fluid dynamics
• Energetics and propulsion
• Materials and structures
• Flight mechanics
• Navigation, guidance and control
• Acoustics
• Optics
• Electromagnetism and radar
• Signal and image processing
• Information processing
• Data fusion
• Decision aid
• Human behaviour
• Robotics and intelligent systems
• Complex system engineering.
Etc.