用于短暂群体推荐的个性引导偏好聚合器

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Applied Soft Computing Pub Date : 2024-09-21 DOI:10.1016/j.asoc.2024.112274
Guangze Ye , Wen Wu , Liye Shi , Wenxin Hu , Xi Chen , Liang He
{"title":"用于短暂群体推荐的个性引导偏好聚合器","authors":"Guangze Ye ,&nbsp;Wen Wu ,&nbsp;Liye Shi ,&nbsp;Wenxin Hu ,&nbsp;Xi Chen ,&nbsp;Liang He","doi":"10.1016/j.asoc.2024.112274","DOIUrl":null,"url":null,"abstract":"<div><div>Ephemeral group recommendation (EGR) aims to suggest items for a group of users who come together for the first time. Existing work typically consider individual preferences as the sole factor in aggregating group preferences. However, they neglect to take into account the importance of the individual inherent factors, such as personality, and thus fail to accurately simulate the group decision-making process. Additionally, these methods often struggle due to insufficient interactive records. To tackle these issues, a <strong>Pe</strong>rsonality-<strong>G</strong>uided Preference <strong>A</strong>ggregator (PEGA) is proposed, which guides the preference aggregation of group members based on their personalities, rather than relying solely on their preferences. Specifically, implicit personalities are first extracted from user reviews. Hyper-rectangles are then used to aggregate individual personalities to obtain the “Group Personality”, which allows for the learning of personality distributions within the group. Subsequently, a personality attention mechanism is employed to aggregate group preferences, and a preference-based fine-tuning module is used to balance the weights of personality and preferences. The role of personality in this approach is twofold: (1) To estimate the importance of individual users in a group and provide explainability; (2) To alleviate the data sparsity issue encountered in ephemeral groups. Experimental results demonstrate that, on four real-world datasets, the PEGA model significantly outperforms related baseline models in terms of classification accuracy and interpretability. Moreover, empirical evidence supports the idea that personality plays a pivotal role in enhancing the performance of EGR tasks.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A personality-guided preference aggregator for ephemeral group recommendation\",\"authors\":\"Guangze Ye ,&nbsp;Wen Wu ,&nbsp;Liye Shi ,&nbsp;Wenxin Hu ,&nbsp;Xi Chen ,&nbsp;Liang He\",\"doi\":\"10.1016/j.asoc.2024.112274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ephemeral group recommendation (EGR) aims to suggest items for a group of users who come together for the first time. Existing work typically consider individual preferences as the sole factor in aggregating group preferences. However, they neglect to take into account the importance of the individual inherent factors, such as personality, and thus fail to accurately simulate the group decision-making process. Additionally, these methods often struggle due to insufficient interactive records. To tackle these issues, a <strong>Pe</strong>rsonality-<strong>G</strong>uided Preference <strong>A</strong>ggregator (PEGA) is proposed, which guides the preference aggregation of group members based on their personalities, rather than relying solely on their preferences. Specifically, implicit personalities are first extracted from user reviews. Hyper-rectangles are then used to aggregate individual personalities to obtain the “Group Personality”, which allows for the learning of personality distributions within the group. Subsequently, a personality attention mechanism is employed to aggregate group preferences, and a preference-based fine-tuning module is used to balance the weights of personality and preferences. The role of personality in this approach is twofold: (1) To estimate the importance of individual users in a group and provide explainability; (2) To alleviate the data sparsity issue encountered in ephemeral groups. Experimental results demonstrate that, on four real-world datasets, the PEGA model significantly outperforms related baseline models in terms of classification accuracy and interpretability. Moreover, empirical evidence supports the idea that personality plays a pivotal role in enhancing the performance of EGR tasks.</div></div>\",\"PeriodicalId\":50737,\"journal\":{\"name\":\"Applied Soft Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Soft Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568494624010482\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494624010482","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

短暂群体推荐(EGR)旨在为首次聚集在一起的用户群体推荐项目。现有的工作通常将个人偏好作为聚合群体偏好的唯一因素。然而,它们忽略了个人固有因素(如个性)的重要性,因此无法准确模拟群体决策过程。此外,由于互动记录不足,这些方法往往难以奏效。为了解决这些问题,我们提出了一种人格引导偏好聚合器(PEGA),它可以根据小组成员的人格而不是仅仅依靠他们的偏好来引导他们的偏好聚合。具体来说,首先从用户评论中提取隐含个性。然后,使用超矩形来聚合个人性格,从而获得 "群体性格",从而学习群体内的性格分布。随后,使用个性关注机制来汇总群体偏好,并使用基于偏好的微调模块来平衡个性和偏好的权重。在这种方法中,个性的作用有两个方面:(1)估计单个用户在群组中的重要性并提供可解释性;(2)缓解短暂群组中遇到的数据稀疏问题。实验结果表明,在四个真实世界数据集上,PEGA 模型在分类准确性和可解释性方面明显优于相关基线模型。此外,经验证据还支持这样一种观点,即个性在提高 EGR 任务的性能方面发挥着关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A personality-guided preference aggregator for ephemeral group recommendation
Ephemeral group recommendation (EGR) aims to suggest items for a group of users who come together for the first time. Existing work typically consider individual preferences as the sole factor in aggregating group preferences. However, they neglect to take into account the importance of the individual inherent factors, such as personality, and thus fail to accurately simulate the group decision-making process. Additionally, these methods often struggle due to insufficient interactive records. To tackle these issues, a Personality-Guided Preference Aggregator (PEGA) is proposed, which guides the preference aggregation of group members based on their personalities, rather than relying solely on their preferences. Specifically, implicit personalities are first extracted from user reviews. Hyper-rectangles are then used to aggregate individual personalities to obtain the “Group Personality”, which allows for the learning of personality distributions within the group. Subsequently, a personality attention mechanism is employed to aggregate group preferences, and a preference-based fine-tuning module is used to balance the weights of personality and preferences. The role of personality in this approach is twofold: (1) To estimate the importance of individual users in a group and provide explainability; (2) To alleviate the data sparsity issue encountered in ephemeral groups. Experimental results demonstrate that, on four real-world datasets, the PEGA model significantly outperforms related baseline models in terms of classification accuracy and interpretability. Moreover, empirical evidence supports the idea that personality plays a pivotal role in enhancing the performance of EGR tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Soft Computing
Applied Soft Computing 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
6.90%
发文量
874
审稿时长
10.9 months
期刊介绍: Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities. Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.
期刊最新文献
An effective surrogate-assisted rank method for evolutionary neural architecture search Knowledge graph-driven mountain railway alignment optimization integrating karst hazard assessment Medical image segmentation network based on feature filtering with low number of parameters Robust Chinese Clinical Named Entity Recognition with information bottleneck and adversarial training Clustering based fuzzy classification with a noise cluster in detecting fraud in insurance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1